Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) Với x,y>0 \(x+y\ge2\sqrt{xy}\Rightarrow1\ge2\sqrt{xy}\Rightarrow2xy\le0,5\)
\(N=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\ge\frac{4}{x^2+2xy+y^2}+\frac{1}{2xy}=\frac{4}{\left(x+y^2\right)}+\frac{1}{0,5}=4+2=6\)
Min N = 6 <=> x=y =0,5