Cho x, y>0 và x+y=1. Tìm giá trị nhỏ nhất của biểu thức:
\(A=\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\)
Cho x,y dương và x+y=1
tìm giá trị nhỏ nhất của
\(A=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\)
\(B=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(C=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)\)
Cho x,y > 0 , x+y=1 . Tìm giá trị nhỏ nhất của biểu thức:
A = \(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
chõ,y,z>0 thỏa mãn xyz=1. Tìm giá trị lớn nhất cảu biểu thức
S=\(\frac{1}{\left(x+1\right)^2+y^2+1}+\frac{1}{\left(y+1\right)^2+z^2+1}+\frac{1}{\left(z+1\right)^2+x^2+1}\)
Cho x,y >0 thỏa mãn x+y=1. Hãy tìm giá trị nhỏ nhất của \(P=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
Bài 1:Cộng các phân thưc sau(rút gọn):
P=\(\frac{1}{\left(y-z\right)\left(x^2-xz-y^2-yz\right)}+\frac{1}{\left(z-x\right)\left(y^2+xy-z^2-xz\right)}+\frac{1}{\left(x-y\right)\left(z^2+yz-x^2-xy\right)}\)
Bài 2:
a) Tìm giá trị nhỏ nhất của P=\(\frac{2\left(2x+1\right)}{x^2+2}\)
b) Tìm giá trị lớn nhất của Q=\(\frac{2x^2-4x+17}{x^2-2x+4}\)
Cho: \(A=\frac{\left(x^2+y\right)\left(\frac{1}{4}+y\right)+x^2y^2+\frac{3}{4}\left(\frac{1}{3}+y\right)}{x^2y^2+1+\left(x^2-y\right)\left(1-y\right)}\)
a, Tìm tập xác định của A
b, Cmr giá trị của A không phụ thuộc vào x
c, Tìm Min A và giá trị tương ứng của y
Cho các số dương x, y, z thỏa mãn:\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
Tìm giá trị lớn nhất của
\(Q=\frac{x}{\sqrt{yz\left(1+x^2\right)}}+\frac{y}{\sqrt{xz\left(1+y^2\right)}}+\frac{z}{\sqrt{xy\left(1+z^2\right)}}\)
Cho x, y là hai số thực không âm thay đổi.
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(\frac{\left(x-y\right)\left(1-xy\right)}{\left(1+x\right)^2\left(1+y\right)^2}\)