Cho x,y > 0. Chứng minh rằng: \(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
cho x,y,z khác 0 và x+y+z=0
chứng minh rằng
\(\frac{x^2+y^2}{x+y}+\frac{y^2+z^2}{y+z}+\frac{x^2+z^2}{x+z}=\frac{x^3}{yz}+\frac{y^3}{xz}+\frac{z^3}{xy}\)
Cho x , y , z > 0 . Chứng minh rằng : \(\frac{x^2-z^2}{y+z}+\frac{y^2-x^2}{z+x}+\frac{z^2-y^2}{x+y}\ge0\)
Cho x + y = 1 và x y 0 . Chứng minh rằng
\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)
Cho x > y > 0. Chứng minh rằng \(\frac{x-y}{x+y}<\frac{x^2-y^2}{x^2+y^2}\)
cho x+y=1 chứng minh rằng \(\frac{x^3}{y^3-1}-\frac{y^3}{x^{3-1}}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)0
Cho x+y=1 và xy khác 0. Chứng minh rằng:
\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)
Cho x;y;z>0. Chứng minh rằng: \(\frac{2\sqrt{x}}{x^3+y^2}+\frac{2\sqrt{y}}{y^3+z^2}+\frac{2\sqrt{z}}{z^3+y^2}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)\(\frac{1}{z^2}\)
Cho x,y,z>0. Chứng minh rằng:
\(\left(\frac{x}{x+y}\right)^2+\left(\frac{y}{y+z}\right)^2+\left(\frac{z}{z+x}\right)^2\ge\frac{3}{4}\)