Cho x thay đổi thỏa mãn : \(x^2+\left(3-x\right)^2\ge5\).
Tìm giá trị nhỏ nhất của \(P=x^4+\left(3-x\right)^4+6x^2\left(3-x\right)^2\)
Cho số thực x thay đổi và thỏa mãn điều kiện: \(x^2+\left(3-x\right)^2\ge5\)
Tìm giá trị nhỏ nhất của biểu thức \(P=x^4+\left(3-x\right)^4+6x^2\left(3-x\right)^2\)
số thực x thay đổi và thỏa mãn điều kiện \(x^2+\left(3-x\right)^2\ge5\)
tìm giá trị nhỏ nhất của biểu thức P=\(x^4\)+\(\left(3-x\right)^4\)+\(6x^2\left(3-x\right)^2\)
Cho số thực dương x,y,z thỏa mãn : x+y+z = 1. Tìm GTNN của biểu thức:\(A=\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
Đặt y=3-x, bài toán trở thành tìm min \(P=x^4+y^4+6x^2y^2\), trong đó x và y là các số thực thỏa mãn hệ \(\int^{x+y=3}_{x^2+y^2=5}\Rightarrow\int^{x^2+y^2+2xy=9}_{x^2+y^2\ge5}\) \(\Rightarrow\left(x^2+y^2\right)+4\left(x^2+y^2+2xy\right)\ge5+4.9=41\)
\(\Rightarrow5\left(x^2+y^2\right)+4\left(2xy\right)\ge41\)
Lại có \(16\left(x^2+y^2\right)^2+25\left(2xy\right)^2\ge40\left(x^2+y^2\right)\left(2xy\right)\) (theo bất đẳng thức cosi) (1)
Dấu bằng xảy ra khi \(4\left(x^2+y^2\right)=5\left(2xy\right)\)
Cộng 2 vế của (1) với \(25\left(x^2+y^2\right)^2+16\left(2xy\right)^2\) ta có
\(41\left(\left(x^2+y^2\right)^2+\left(2xy\right)^2\right)\ge\left(5\left(x^2+y^2\right)+4\left(2xy\right)\right)^2\ge41^2\)
\(\Rightarrow\left(x^2+y^2\right)^2+\left(2xy\right)^2\ge41\Leftrightarrow x^4+y^4+6x^2y^2\ge41\)
Vậy min =41, dấu bằng xảy ra khi x=1 hoặc x=2
Với x,y là các số thực thỏa mãn điều kiện \(\left(2+x\right)\left(y-1\right)=\frac{9}{4}\)Tìm GTNN của biểu thức:
\(A=\sqrt{x^4+4x^3+6x^2+4x+2}+\sqrt{y^4-8y^3+24y^2-32y+17}\)
Cho x,y,z>0 thỏa mãn: x+y+z=3. Tìm GTNN của \(P=\frac{\left(x+1\right)^2.\left(y+1\right)^2}{z^2+1}+\frac{\left(y+1\right)^2.\left(z+1\right)^2}{x^2+1}+\frac{\left(z+1\right)^2.\left(x+1\right)^2}{y^2+1}\)
cho 3 số thực dương x;y;z thỏa mãn x+y+z<=3/2. tìm GTNN của biểu thức:
\(p=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}\)
cho 3 số thực dương x;y;z thỏa mãn x+y+z<=3/2. tìm GTNN của biểu thức :
\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}\)