Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
TS Minh Quan

Cho x là số thực khác 0. Tìm GTNN của biểu thức A = \(8x^2-4x+\frac{1}{4x^2}+2015\)

Đinh Đức Hùng
29 tháng 11 2017 lúc 21:55

\(A=8x^2-4x+\frac{1}{4x^2}+2015\)

\(=\left(4x^2+\frac{1}{4x^2}\right)+\left(4x^2-4x+1\right)+2014\)

\(=\left(4x^2+\frac{1}{4x^2}\right)+\left(2x-1\right)^2+2014\)

Áp dụng bđt AM - GM ta có : \(4x^2+\frac{1}{4x^2}\ge2\sqrt{4x^2.\frac{1}{4x^2}}=2\)

\(\left(2x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(4x^2+\frac{1}{4x^2}\right)+\left(4x^2-4x+1\right)\ge2\)

\(\Rightarrow A=\left(4x^2+\frac{1}{4x^2}\right)+\left(4x^2-4x+1\right)+2014\ge2016\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}4x^2=\frac{1}{4x^2}\\\left(2x-1\right)^2=0\end{cases}}\) \(\Rightarrow x=\frac{1}{2}\)

Vậy \(A_{min}=2016\) tại \(x=\frac{1}{2}\)


Các câu hỏi tương tự
Đinh Đức Hùng
Xem chi tiết
Cô gái thất thường (Ánh...
Xem chi tiết
Nguyễn Hồ Bảo Trâm
Xem chi tiết
lê song trí
Xem chi tiết
thiên thần
Xem chi tiết
bạch thục quyên
Xem chi tiết
Nguyễn Bá Thông
Xem chi tiết
Phương Linh
Xem chi tiết
nghia
Xem chi tiết