Ôn tập cuối năm phần số học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thùy Linh

cho x + 4y = 1. Chứng minh rằng x2 + 4y2 ≥ 0.2

giúp mình với nhá ❤ c.ơn

hattori heiji
21 tháng 4 2018 lúc 16:20

Áp dụng BĐT bunhiacopxki

\(\left(1+2^2\right)\left(x^2+4y^4\right)\ge\left(x+4y\right)^2\)

<=> \(5\left(x^2+4y^2\right)\ge1\)

<=> \(x^2+4y^2\ge\dfrac{1}{5}\) (đpcm)

dấu '=' xảy ra khi x=\(\dfrac{y}{4}\) => x=\(\dfrac{13}{17}\) ;y=\(\dfrac{4}{17}\)

hattori heiji
22 tháng 4 2018 lúc 14:10

Áp dụng BĐT bunhiacopxki ta có

\(\left(1^2+2^2\right)\left(x^2+4y^2\right)\ge\left(x+4y\right)^2\)

<=> \(5\left(x^2+4y^2\right)\ge1\) (vì x+4y=1)

<=> \(x^2+4y^2\ge\dfrac{1}{5}\) (đpcm)

dấu "=" xảy ra khi x=\(\dfrac{y}{4}\) => \(x-\dfrac{y}{4}=0\) (1)

ta có x+4y=1 (2)

(2) - (1) ta đc

\(x+4y-\left(x-\dfrac{y}{4}\right)=1\)

<=>\(x+4y-x+\dfrac{y}{4}=1\)

<=> \(\dfrac{16y}{4}+\dfrac{y}{4}=\dfrac{4}{4}\)

<=> 16y+y=4

<=> 17y=4

<=> y=\(\dfrac{4}{17}\)

=> x=\(\dfrac{13}{15}\)


Các câu hỏi tương tự
Như Quỳnh Võ
Xem chi tiết
Bích Nguyệtt
Xem chi tiết
Như Quỳnh Võ
Xem chi tiết
Ngoc Huy
Xem chi tiết
Hoang Yen Pham
Xem chi tiết
Trang Trần
Xem chi tiết
wcdccedc
Xem chi tiết
Khôi Hoàng
Xem chi tiết
Uyển Lộc
Xem chi tiết