Ôn tập cuối năm phần số học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
wcdccedc

Cho x + 4y = 1 . Chứng mỉnh rằng \(x^2+4y^2\) lớn hơn hoặc bằng \(\dfrac{1}{5}\)

Lightning Farron
23 tháng 5 2017 lúc 16:53

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(1+4\right)\left(x^2+4y^2\right)\ge\left(x+4y\right)^2\)

\(\Rightarrow5\left(x^2+4y^2\right)\ge\left(x+4y\right)^2\)

\(\Rightarrow5\left(x^2+4y^2\right)\ge\left(x+4y\right)^2=1^2=1\)

\(\Rightarrow5\left(x^2+4y^2\right)\ge1\Rightarrow x^2+4y^2\ge\dfrac{1}{5}\)

Đẳng thức xảy ra khi \(x=y=\dfrac{1}{5}\)

tran trong bac
23 tháng 5 2017 lúc 16:54

x^2 +4y^2 >= 1/5 ta có x+4y=1 => x=1-4y

=> x^2 +4y^2-1/5 >=0

thay x=1-4y vào ta đk

1-8y+16Y^2 +4y^2 -1/5 >=0

20y^2-8y+4/5>=0

5(2y-2/5)>=0(luôn đúng )

suy ra đpcm


Các câu hỏi tương tự
Quách Trần Gia Lạc
Xem chi tiết
Trang Trần
Xem chi tiết
david thomson
Xem chi tiết
Thùy Linh
Xem chi tiết
pham tuan anh
Xem chi tiết
đặng thị khánh linh
Xem chi tiết
wcdccedc
Xem chi tiết
Không tên
Xem chi tiết
wcdccedc
Xem chi tiết