Cho x,y,z > 0 và x+y+z+xy+yz+zx=6 .C/minh x^2 + y^2+ z^2 > hoặc = 6
Cho \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\).Hãy tính giá trị biểu thức: A=\(\dfrac{xy}{z^2}+\dfrac{yz}{x^2}+\dfrac{zx}{y^2}\)
Cho x, y, z là các số lớn hơn hoặc bằng 1. Chứng minh rằng:
\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)
cho x,y,z đôi 1 khác nhau thỏa mãn x2- xy = y2 - yz =z2 - zx
tính P = \(\dfrac{x}{z}+\dfrac{z}{y}+\dfrac{y}{x}\)
Cho \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\left(x,y,z\ne0\right)\). Tính \(\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}\)
Cho \(x-y-z=0\)và \(xy+yz-zx=0\)
Tính P=\(\left(x+y\right)^3-\left(z-1\right)^8+2\left(x+\dfrac{1}{2}\right)^4\)
Tìm các số x , y , z , biết : \(x^2+y^2+z^2=xy+yz+zx\) và \(x^{2009}+y^{2009}+z^{2009}=3^{2010}\)
Tìm GTNN của :
A = \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\) ( x , y , z > 0 )
Biết : x2 + y2 + z2 ≤ 3
Làm ơn giúp vs hu hu
CMR:các biểu thức sau không phụ thuộc vào x,y,z:
\(P=\dfrac{x-y}{xy}+\dfrac{y-z}{yz}+\dfrac{z-x}{zx}\) Q=\(\dfrac{1}{\left(x-y\right)\left(y-z\right)}+\dfrac{1}{\left(x-z\right)\left(y-z\right)}+\dfrac{1}{\left(x-y\right)\left(x-z\right)}\)