Lời giải:
Áp dụng BĐT Bunhiacopxky:
$(x^2+y^2)(1+2021^2)\geq (x+2021y)^2=1$
$\Rightarrow x^2+y^2\geq \frac{1}{1+2021^2}$
Vậy GTNN của $x^2+y^2$ là $\frac{1}{1+2021^2}$
\(x+2021y=1\Rightarrow x=1-2021y\)
\(\Rightarrow x^2+y^2=\left(1-2021y\right)^2+y^2=4084442x^2-4042x+1=\dfrac{1}{4084442}\left(x-\dfrac{2021}{4084442}\right)^2+\dfrac{1}{4084442}\ge\dfrac{1}{4084442}\)