Ta có :
\(B=\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}=\frac{4}{2a}=\frac{2}{a}\)
Dấu "=" xảy ra <=> \(x=y=a\)
Vậy \(B_{min}=\frac{2}{a}\) tại \(x=y=a\)
Ta có :
\(B=\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}=\frac{4}{2a}=\frac{2}{a}\)
Dấu "=" xảy ra <=> \(x=y=a\)
Vậy \(B_{min}=\frac{2}{a}\) tại \(x=y=a\)
1. Cho a, b là các hằng số dương. Tìm min A=x+y biết x>0, y>0; \(\frac{a}{x}+\frac{b}{y}=1\)
2.Tìm \(a\in Z\), a#0 sao cho max và min của \(A=\frac{12x\left(x-a\right)}{x^2+36}\)cũng là số nguyên
3. Cho \(A=\frac{x^2+px+q}{x^2+1}\) . Tìm p, q để max A=9 và min A=-1
4. Tìm min \(P=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\) với x,y,z>0 ; \(x^2+y^2+z^2\le3\)
5. Tìm min \(P=3x+2y+\frac{6}{x}+\frac{8}{y}\) với \(x+y\ge6\)
6. Tìm min, max \(P=x\sqrt{5-x}+\left(3-x\right)\sqrt{2+x}\) với \(0\le x\le3\)
7.Tìm min \(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\) với x>0, y>0; x+y=1
8.Tìm min, max \(P=x\left(x^2+y\right)+y\left(y^2+x\right)\) với x+y=2003
9. Tìm min, max P = x--y+2004 biết \(\frac{x^2}{9}+\frac{y^2}{16}=36\)
10. Tìm mã A=|x-y| biết \(x^2+4y^2=1\)
cho x>0, y>0 và x+y=2a (a>0)
tìm giá trị nhỏ nhất của biểu thức \(A=\frac{1}{x}+\frac{1}{y}\)
1) Cho x,y>0 và x+y=< 1 Tìm min A = \(\frac{1}{x^2+y^2}+\frac{1}{xy}\)
2) Cho x >= 3y và x;y > 0 Tìm min A = \(\frac{x^2+y^2}{xy}\)
3) Cho x >= 4y và x;y > 0 Tìm min A = xy/(x^2 +y^2)
a) cho x,y>0 , x+y=1 .tìm min P
P=\(\frac{1}{xy}+\frac{1}{x^2+y^2}\)
b) CMR \(\frac{1}{3a}+\frac{1}{3b}\ge\frac{1}{2a+b}+\frac{1}{2b+a}\left(a,b,c>0\right)\)
Tìm Min A biết x>0 ; y>0 và x+y =1
A =\(\frac{1}{x^3+y^3}+\frac{1}{xy}\)
Cho (P):y=2ax2 (a>0) và đường thẳng d:y=4x-y-2a2=0. Tìm a để d cắt (P) tại 2 điểm phân biệt A,B có hoành độ x1,x2 sao cho biểu thức \(Q_{min}=\frac{8}{x_1+x_2}+\frac{1}{2x_1x_2}\)
Cho \(x+y=1,x>0,y>0\).Tìm \(P_{MIN}=\frac{a^2}{x}+\frac{b^2}{y}\)(biết a,b là hằng số đã cho)
1) Cho x,y,z>0. CMR:
\(\sqrt{\frac{x}{y+z}}+\sqrt{\frac{y}{x+z}}+\sqrt{\frac{z}{x+y}}>2\)
2) Cho a,b,c>0. Tìm Min
\(P=\frac{\sqrt{ab}}{a+b+2c}+\frac{\sqrt{bc}}{b+c+2a}+\frac{\sqrt{ac}}{a+c+2b}\)
Bài 1: Tìm min và max của \(A=x\left(x^2-6\right)\) biết \(0\le x\le3\)
Baì 2: Tìm max của \(A=\left(3-x\right)\left(4-y\right)\left(2x+3y\right)\) biết \(0\le x\le3\) và \(0\le y\le4\)
Bài 3: Cho a, b, c>0 và a+b+c=1. Tìm min của \(A=\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\)
Bài 4: Cho 0<x<2. Tìm min của \(A=\frac{9x}{2-x}+\frac{2}{x}\)