1) Tìm GTNN của \(B=2\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)-5\left(\frac{x}{y}+\frac{y}{x}\right)\\ \left(x,y>0\right)\)
2) Tìm GTLN và GTNN của \(C=\frac{\left(x^2-y^2\right)\left(1-x^2y^2\right)}{\left(1+x^2\right)^2\left(1+y^2\right)^2}\)
Cho x,y >0 và x+y=1. Tìm GTNN của\(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
Cho x>0, y>0 và \(x^2+y^2=1\). Tìm GTNN của \(A=\left(1+x\right)\left(1+\frac{1}{y}\right)+\left(1+y\right)\left(1+\frac{1}{x}\right)\)
Cho x,y,z>0 thỏa mãn: x+y+z=3. Tìm GTNN của \(P=\frac{\left(x+1\right)^2.\left(y+1\right)^2}{z^2+1}+\frac{\left(y+1\right)^2.\left(z+1\right)^2}{x^2+1}+\frac{\left(z+1\right)^2.\left(x+1\right)^2}{y^2+1}\)
tìm GTNN của biểu thức, biêts x+y=1 và x>0, y<0
\(A=\left(x+\frac{1}{y}\right)^2+\left(y+\frac{1}{x}\right)^2\)
a, Cho x,y,z >0 thỏa điều kiện x+y+z=3. Tìm GTNN của A=\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\)
b, cho x >1 , y>1. Tìm GTNN của A=\(\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)
Cho 3 số x,y,z thỏa mãn 0<x,y,z\(\le\)1 và x+y+z=2
Tìm GTNN của A=\(\frac{\left(x-1\right)^2}{z}+\frac{\left(y-1\right)^2}{x}+\frac{\left(z-1\right)^2}{y}\)
Cho x,y > 0 thỏa mãn x + y = 1. Hãy tìm GTNN của \(P=\left(x^2+\frac{1}{y^2}\right)+\left(y^2+\frac{1}{x^2}\right)\)
Cho x,y>0 thoả mãn x+y=1. Tìm GTNN của biểu thức: P=\(\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)