1) cho 2 số duong thỏa mãn
\(xy+\sqrt{\left(x^2+1\right)\left(y^2+1\right)}=\sqrt{2015}\)
tính giá trị của biểu thức A=\(x\sqrt{y^2+1}+y\sqrt{x^2+1}\)
2) cho \(\left(x+\sqrt{x^2+\sqrt{2015}}\right)\left(y+\sqrt{y^2+\sqrt{2015}}\right)=\sqrt{2015}\)
tính tổng x+y
3) cho 3 số duong x,y,z thỏa mãn
\(x\sqrt{x}+y\sqrt{y}+z\sqrt{z}=3\sqrt{xyz}\)
tính giá trị biểu thức
A=\(\left(1+\frac{\sqrt{x}}{\sqrt{y}}\right)\left(1+\frac{\sqrt{y}}{\sqrt{z}}\right)\left(1+\frac{\sqrt{z}}{\sqrt{x}}\right)\)
a) Tính giá trị của biểu thức: \(A=2x^2+3x^2-4x+2\)
với \(x=\sqrt{2+\sqrt{\frac{5+\sqrt{5}}{2}}}+\sqrt{2-\sqrt{\frac{5+\sqrt{5}}{2}}}-\sqrt{3-\sqrt{5}}-1\)
b) Cho x, y thỏa mãn:
\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{y+2014}+\sqrt{2015-y}-\sqrt{2014-y}\)
CM: x = y
Cho 3 số x,y,z khác 0 thỏa mãn x+y+z=1 và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\) Tính giá trị của biểu thức P=\(\left(x^{2015}-1\right)\times\left(y^{2015}-1\right)\times\left(z^{2015}-1\right)\)
Cho x,y,z khác 0 và thỏa mãn:
\(x+y+z=\frac{1}{2}\)
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{xyz}=4\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>0\)
Tính giá trị của biểu thức:\(P=\left(x^{2011}+y^{2011}\right)\left(y^{2013}+z^{2013}\right)\left(z^{2015}+x^{2015}\right)\)
Giải giúp
Cho x, y, z > 0 thỏa mãn \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=1\). Tính giá trị của biểu thức
\(B=\sqrt{\left(x+1\right)\left(y+1\right)\left(z+1\right)}.\left(\frac{\sqrt{x}}{x+1}+\frac{\sqrt{y}}{y+1}+\frac{\sqrt{z}}{z+1}\right)\)
Cho x,y,z >0 thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\sqrt{3}\)
Tính giá trị nhỏ nhất của biểu thức :
\(P=\frac{\sqrt{2x^2+y^2}}{xy}+\frac{\sqrt{2y^2+z^2}}{yz}+\frac{\sqrt{2z^2+x^2}}{xz}\)
cho các số thực dương x;y;z thỏa mãn :\(\sqrt{x^2+y^2}\) +\(\sqrt{y^2+z^2}\)+\(\sqrt{z^2+x^2}\)=2015
tìm giá trị nhỏ nhất của biểu thức : T=\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
Cho x,y,z thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\), tính giá trị biểu thức: \(M=\frac{19}{4}+\left(x^{2013}+y^{2013}\right)\left(y^{2015}+z^{2015}\right)\left(z^{2017}+x^{2017}\right)\)