Cho tứ giác lồi ABCD có các đường chéo AC và BD bằng nhau. Gọi M , N lần lượt là trung điểm của các cạnh AD và BC. Chứng minh rằng đường thẳng MN tạo với hai đường thẳng AC và BD các góc bằng nhau.
GIÚP MÌNH VỚI MAI PHẢI NỘP RỒI, CẢM ƠN MNG
Cho tứ giác ABCD có E, F, G, H lần lượt là trọng tâm của tam giác BCD, ACD, ABD, ABC. Gọi O và P lần lượt là trung điểm của AC và BD. Chứng minh AE, BF, CG, DH, OP đồng quy tại một điểm.
Cho \(\Delta ABC\) có G là trọng tâm . Vẽ đường thẳng d không giao \(\Delta ABC\) . Trên d gọi \(A',B',C',G'\) lần lượt là hình chiếu của \(A,B,C,G\) . Chứng minh rằng \(GG'=\dfrac{AA'+BB'+CC'}{3}\)
Cho tam giác ABC vuông tại A, AH là đường cao. D, E lần lượt là trung điểm của các đoạn thẳng AB, AH. Đường thẳng vuông góc AB taị D cắt CE ở F. Chứng minh rằng tam giác BCF vuông
cho ▲ABC nhọn có các đường cao AA',BB',CC' cắt nhau tại H
a) BC'.BA+CB'.CA=BC^2
b) Gọi D là trung điểm của BC. Qua H kẻ đường thẳng ⊥DH cắt AB,AC lần lượt tại M và N. Chứng minh H là trung điểm của MN
Cho tam giác ABC có AH là đường cao ( H thuộc BC). Gọi E và D lần lượt là hình chiếu
của H trên AB và AC. Chứng minh rằng :
a)tam giác ABH ~ tam giác AHE
b) HE2 = AE. BE
c) Gọi M là giao điểm của BD và CE. Chứng minh rằng tam giác ADE ~ tam giác ABC.
d) Chứng minh góc HAD = góc DEH
cho ▲ABC nhọn có các đường cao AA',BB',CC' cắt nhau tại H
a) ▲AC'B' đồng dạng với ▲ABC
b) BC'.BA+CB'.CA=BC^2
c)\(\dfrac{HA'}{AA'}+\dfrac{HB'}{BB'}=\dfrac{CH}{CC'}\)
d) Gọi D là trung điểm của BC. Qua H kẻ đường thẳng ⊥DH cắt AB,AC lần lượt tại M và N. Chứng minh H là trung điểm của MN
Làm ơn giúp mình với sáng thứ bảy mình nộp bài rồi!!!!