Bài 7: Cho ABC là hình bình hành ( 𝐴̂ > 90𝑜 , AB > BC) . kẺ Cx ⊥ BC, trên Cx lấy E, F sao cho CE = CF = CB. Kẻ Cy ⊥ DC, lấy P, Q trên Cy sao cho CP = CQ = CD (E và P ở trong cùng một nửa mặt phẳng với D bờ là BC). Chứng minh rằng:
a) EPEQ là hình bình hành
b) ADC = ECP
c) AC ⊥ EP