Cho tứ giác lồi ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC và M, N lần lượt là trung điểm của các đoạn thẳng AC, BD. Chứng minh rằng các đường thẳng AA', BB', CC', DD' và MN đồng quy.
HSG
Cho tam giác ABC vuông tại A, đường cao AH ( H thuộc BC)
a) Cm: tam giác HAC đồng dạng tam giác ABC
b) CHo AB = 6cm, AC= 8cm. Tính Ah, BC
c) Gọi E, F lần lượt là trung điểm của BH, AH. Gọi G là giao điểm của CF và AE. Tính tỉ số diện tích của tam giác AGF và tam giác CGE
Cho tam giác ABC có AH là đường cao ( H thuộc BC). Gọi E và D lần lượt là hình chiếu
của H trên AB và AC. Chứng minh rằng :
a)tam giác ABH ~ tam giác AHE
b) HE2 = AE. BE
c) Gọi M là giao điểm của BD và CE. Chứng minh rằng tam giác ADE ~ tam giác ABC.
d) Chứng minh góc HAD = góc DEH
cho tam giác ABC có G là trọng tâm . Gọi E ,F , H lần lượt là trung điểm của AG , BG, CG . Chứng minh tam giác EFH đồng dạng với tam giác ABC và G là trọng tâm của tam giác EFH
Cho hình thang ABCD AB song song CD từ B và D lần lượt BM vuông góc AC và BD vuông góc AC chứng minh rằng tam giác a b m đồng dạng tam giác c d n minh rằng OA.OC=OB.OD Gọi E là trung điểm của AB ,F là trung điểm của CD Chứng minh O E F thẳng hàng