Ôn tập cuối năm phần hình học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Jeon JungKook

Cho tam giác ABC có AH là đường cao ( H thuộc BC). Gọi E và D lần lượt là hình chiếu
của H trên AB và AC. Chứng minh rằng :
a)tam giác ABH ~ tam giác AHE
b) HE2 = AE. BE

c) Gọi M là giao điểm của BD và CE. Chứng minh rằng tam giác ADE ~ tam giác ABC.
d) Chứng minh góc HAD = góc DEH

Nguyễn Lê Phước Thịnh
12 tháng 5 2021 lúc 19:18

a) Xét ΔABH vuông tại H và ΔAHE vuông tại E có 

\(\widehat{BAH}\) chung

Do đó: ΔABH\(\sim\)ΔAHE(g-g)

Nguyễn Lê Phước Thịnh
12 tháng 5 2021 lúc 19:19

b) Xét ΔAEH vuông tại E và ΔHEB vuông tại E có 

\(\widehat{EAH}=\widehat{EHB}\left(=90^0-\widehat{EBH}\right)\)

Do đó: ΔAEH\(\sim\)ΔHEB(g-g)

Suy ra: \(\dfrac{EA}{EH}=\dfrac{EH}{EB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(HE^2=AE\cdot BE\)(đpcm)

Nguyễn Lê Phước Thịnh
12 tháng 5 2021 lúc 19:21

d) Xét tứ giác AEHD có 

\(\widehat{AEH}\) và \(\widehat{ADH}\) là hai góc đối

\(\widehat{AEH}+\widehat{ADH}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AEHD là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Suy ra: \(\widehat{HAD}=\widehat{HED}\)(hai góc cùng nhìn cạnh HD)(Đpcm)


Các câu hỏi tương tự
Ctuu
Xem chi tiết
Phương Linh
Xem chi tiết
Meeee
Xem chi tiết
Thaotran Accmoicua
Xem chi tiết
Kii
Xem chi tiết
quanh
Xem chi tiết
Tu Lưu
Xem chi tiết
Bích Huệ
Xem chi tiết
Kii
Xem chi tiết