cho tứ giác ABCD nội tiếp đường tròn tâm (O) đường kính AB. Hai đường chéo AC và BD cắt nhau tại I. Kẻ IE vuông góc với AB. Chứng minh rằng:
a) Tứ giác AIDE nội tiếp một đường tròn.
b) Tia BD là tia phân giác của góc CDE.
c) Trường hợp AB không song song với CD. Chứng minh 4 điểm O, E, D, C cùng thuộc một đường tròn.
Cho đường tròn tâm O, bán kính R. Vẽ 2 dây AB, CD saocho AB=CD , tia AB cắt tia CD tại M ở ngoài đường tròn
a) CM: MO là tia phân giác của góc AMC
b) CM: Tứ giác ABDC là hình thang cân
Cho đường tròn tâm O, bán kính R. Vẽ 2 dây AB, CD saocho AB=CD , tia AB cắt tia CD tại M ở ngoài đường tròn
a) CM: MO là tia phân giác của góc AMC
b) CM: Tứ giác ABDC là hình thang cân
cho tam giác ABC nội tiếp chắn nửa đường tròn,đường kính BC.Tiếp tuyến tại B của nửa đường tròn cắt AC tại D, lấy F thuộc cung AB, CF cát BD tại E, AF cắt BD tại K.
a) CM; góc ABD=AFC; tứ giác ADEF nội tiếp
b) tia phân giác của góc DCE cắt AF ở P và cắt BD ở M
Tia phân giác của góc AKD cắt CE ở Q và cắt CD ở N.
CM; tam giác KMP và tam giác CNQ là tam giác cân
c) CM; tứ giác MNPQ là tứ giác nội tiếp.
Cho nửa đường tròn (O) có đường kính AB = 2R. CD là dây cung thay đổi của nửa đường tròn sao cho CD = R và C thuộc cung AD (C khác A và D khác B). AD cắt BC tại H, hai đường thẳng AC và BD cắt nhau tại F.
c) Gọi I là trung diểm của HF. Chứng minh tia OI là tia phân giác của góc COD.
d) Chứng minh điểm I thuộc một đường tròn cố định khi CD thay đổi
Cho đường tròn (O: R) có hai đường kính AB và CD vuông góc với nhau. Lấy điểm K thuộc cung nhỏ AC, kẻ KH vuông góc AB tại H. Tia AC cắt HK tại I, tia BC cắt HK tại E, nối AE cắt đường tròn (O; R) tại F.
1. Chứng minh tứ giác BHFE là tứ giác nội tiếp.
2. Chứng minh: EF EA EC EB . . .
3. Tính theo R diện tích FEC khi H là trung điểm của OA.
4. Cho K di chuyển trên cung nhỏ AC. Chứng minh đường thẳng FH luôn đi qua một điểm cố định.
giúp mình ý 3 với ạ
Cho đường tròn (O) bán kính BC. Lấy điểm A thuộc đường tròn sao cho AB>AC . Trên đoạn OB lấy điểm M(M khác O và khác B) . Đường thẳng vuông góc với BC tại M cắt AB tại H. Tai CH cắt đường tròn (O) tại D( D khác C) tia BD cắt đường MH tại I a CM: A C M H cùng thuộc một đường tròn b Tia AB là phân giác góc DMA c ND.BI=BH. BA và 3 điểm C A I thẳng hàng
Cho tứ giác ABCD nội tiếp đường tròn (O) đường kính AB. Hai đường chéo AC và BD cắt nhau tại I. Kẻ IE vuông góc với AB. Chứng minh :
a. Tứ giác ADIE nội tiếp đường tròn ;
b. Tia DB là phân giác của góc CDE ;
c. Nếu AB không song song CD, chứng minh bốn điểm O, E, D, C cùng thuộc một đường tròn.
Cho đường tròn (O;R) có đường kính AB. Tiếp tuyến tại M bất kì thuộc đường tròn (O) cắt các tiếp tuyến tại A và B lần lượt tại C và D
a) cm: AC+ BD =CD và góc COD=90 độ
b) cm tứ giác ACMO nội tiếp và AC.BD= R^2
c)Tia BM cắt tia AC tại N.cm: ON vuông góc với AD
d) AM cắt OC tại E, BM cắt OD tại F. Xác định vị trí điểm M để đường tròn ngoại tiếp tứ giác CEFD có bán kính nhỏ nhất.