Cho tam giác ABC vuông tại A(AB < AC), đường cao AH. Đường tròn tâm ở đường kính AH cắt các cạnh AB, AC lần lượt tại M, N, 1) Chứng minh tứ giác AMIN là hình chữ nhật và AM AB = AN AC 2) Gọi O là trung điểm của cạnh BC, D là giao điểm của MV và On Chứng minh tứ giác BAVC nội tiếp và O L M N 3) Gọi P là giao điểm của BC và MN, K là giao điểm thứ hai của AP và đường tròn () đường kính AH. Chứng minh rằng BKC 90°
Cho hình vuông ABCD , các điểm M, N thay đổi lần lượt nằm trên các cạnh BC, CD sao cho \(\widehat{MAN}=45^0\)(M,. N không trùng với các đỉnh của hình vuông). Gọi P, Q lần lượt là giao điểm của AM, AN với BD.
1) Chứng minh rằng: Tứ giác ABMQ là tứ giác nội tiếp.
2) Chứng minh rằng: Tỉ số diện tích của APQ và tam giác ANM không đổi
Trên các cạnh BC, CD của hình vuông ABCD có AB =1 lần lượt lấy các điểm M và N sao cho MC + CN + MN =2. Gọi P, Q lần lượt là giao điểm của BD với AM và AN. Chứng minh rằng các đoạn thẳng BP, PQ,QD lập thành 3 cạnh của một tam giác vuông
Cho hình vuông ABCD có độ dài cạnh bằng a, M là một điểm thay đổi trên cạnh BC (M khác B) và N là điểm thay đổi trên cạnh CD (N khác C) sao cho MAN = 450 . Đường chéo BD cắt AM và AN lần lượt tại P và Q. a) Chứng minh tứ giác ABMQ là tứ giác nội tiếp. b) Gọi H là giao điểm của MQ và NP. Chứng minh AH vuông góc với MN.
Bài 2. Cho hình vuông ABCD có cạnh là a, trên cạnh AB và BC lần lượt lấy các điểm M và N sao cho AM BN. Gọi K là giao điểm của AN và DM.
a/. Chứng minh rằng 4 điểm C, D, K, N cùng thuộc một đường tròn.
b/. Trong trường hợp M, N là trung điểm của AB và BC. Hãy xác định tâm của đường tròn này và tính bán kính của đường tròn theo a.
M và N lần lượt là trung điểm của BC ,CD của tứ giác ABCD.Chứng minh \(S\left(ABCD\right)\le\frac{1}{2}\left(AM+AN\right)^2\)
Cho tứ giác ABCD. Gọi K,L,M,N lần lượt là trung điểm của DC, DA, AB, BC. Gọi giao điểm của AK với BL, DN lần lượt là P và S. CM cắt BL, DN lần lượt tại Q và R
a)Xác định diện tích tứ giác PQRS nếu biết diện tích tứ giác ABCD, AMQP, CKSR tương ứng là So,S1,S2
Cho hình chóp SABCD có đáy là hình vuông cạnh a, mặt bên SAB là tam giác đều, vuông góc vs (ABCD) và SC =a căn 2 , Gọi H và K lần lượt là trung điểm của AB và AD. cosin góc giữa SC và (SHD) là?
Giúp mk với!!!
Cho tứ giác ABCD có 2 đường chéo AC và BD vuông góc với nhau. Gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, BC, CD và DA.
a) C/m: Bốn điểm E, F, G, H cùng thuộc một đường tròn.
b) Giả sử AB = 24 cm và BD = 18 cm. Tính bán kính của đường tròn đi qua bốn điểm E, F, G, H.