Giả sử E, F lần lượt là trung điểm AC, BD.
Theo công thức trung tuyến:
\(\left\{{}\begin{matrix}BE^2=\dfrac{AB^2+BC^2}{2}-\dfrac{AC^2}{4}\\DE^2=\dfrac{CD^2+DA^2}{2}-\dfrac{AC^2}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}AB^2+BC^2=2BE^2+\dfrac{AC^2}{2}\\CD^2+DA^2=2DE^2+AC^2\end{matrix}\right.\)
\(\Rightarrow AB^2+BC^2+CA^2+DA^2\)
\(=2\left(BE^2+DE^2\right)+AC^2\)
\(=4EF^2+BD^2+AC^2\left(đpcm\right)\)