Cho tứ giác ABCD. Trên cạnh AB; CD lấy lần lượt các điểm M, N sao cho 3 A M → = 2 A B → và 3 D N → = 2 D C → . Tính vectơ M N → theo hai vectơ A D → , B C → .
A. M N → = 1 3 A D → + 1 3 B C → .
B. M N → = 1 3 A D → − 2 3 B C → .
C. M N → = 1 3 A D → + 2 3 B C → .
D. M N → = 2 3 A D → + 1 3 B C → .
Câu 8: Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm của AD và BC, có bao nhiêu vectơ bằng với DM từ các điểm đã cho? A. 3. B. 4. C. 5. D. Câu 9: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chọn khẳng định đúng trong các khẳng định sau.
A. AD BC . B. MQ PN . C. MN QP . D. AB DC .
Câu 10: Cho tam giác ABC với trực tâm H, D là điểm đối xứng với B qua tâm O của đường tròn ngoại tiếp tam giác ABC. Khẳng định nào sau đây là đúng
A. HA CD và AD CH .
B. HA CD và DA HC .
C. HA CD và AD HC .
D. HA CD và AD HC và OB OD .
Câu 1: Cho ABCD là hình vuông cạnh bằng 1. Khi đó độ dài của AC bằng
A. 1. B. 2. C. 2. D. 3.
Câu 2: Cho tam giác ABC vuông tại C có cạnh AC cm BC cm 4 , 3 . Độ dài của vectơ AB là
A. 7 . cm B. 6 . cm C. 5 . cm D. 4 . cm
Câu 3: Cho hình vuông ABCD tâm O, cạnh 2a. Độ dài vectơ DO bằng
A. 2 2. a B. 2 . 2 a C. a 2. D. 2 2. a
Câu 4: Cho đoạn thẳng AB cm 10 , điểm C thỏa mãn AC CB . Độ dài vectơ AC là
A. 10 . cm B. 5 . cm C. 20 . cm D. 15 . c
Cho tam giác ABC, trên cạnh BC lấy điểm D sao cho BD= 2/3 BC, M là trung điểm của đoạn thẳng AD, điểm N thoả mãn điều kiện vectơ AN = 2/5 vectơ AC. Chứng minh 3 điểm B , M ,N thẳng hàng.
Cho tam giác đều ABC . Gọi M,N ,P lần lượt là các điểm thoả mãn vectơ BM = k vectơ BC , 4 vectơ AN = 3 vectơ AB , 3 vectơ AP = 2 vectơ AC . a, Biểu diễn vectơ AM theo hai vectơ AB , AC . b, Tìm k để hai đường thẳng AM , NP vuông góc với nhau.
Cho tam giác ABC, gọi M, N, P lần lượt là trung điểm các cạnh BC, CA, AB. Số vectơ bằng vectơ M N → có điểm đầu và điểm cuối trùng với một trong các điểm A, B, C, M, N, P bằng:
A. 1
B. 2
C. 3
D. 6
Cho tam giác ABC gọi M,N,P lần lượt là trung điểm của các cạnh AB,AC,BC a) Tìm các vectơ cùng phương AM b) Tìm các vectơ cùng hướng MN c) Tìm các vectơ ngược hướng BC
Các điểm M(2; 3), N(0; -4), P(-1; 6) lần lượt là trung điểm các cạnh BC, CA, AB của tam giác ABC . Tọa độ đỉnh A của tam giác là:
A. (1; -10) B. (-3; 1) C. (-2; -7) D. (-3; -1)
Trong mặt phẳng Oxy, cho điểm A(2;-4), đường thẳng Δ: x = -3 + 2t, y = 1 + t và đường tròn (C): x^2 + y^2 – 2x – 8y – 8 = 0.
a. Tìm một vectơ pháp tuyến n của đường thẳng Δ. Lập phương trình tổng quát của đường thẳng d, biết d đi qua điểm A và nhận n làm vectơ pháp tuyến.
b. Viết phương trình đường tròn (T), biết (T) có tâm A và tiếp xúc với Δ.
c. Gọi P, Q là các giao điểm của Δ và (C). Tìm toạ độ điểm M thuộc (C) sao cho tam giác MPQ cân tại M.
Cho tứ giác ABCD. Gọi M,N là các điểm được xác định bởi MA- 2 MB = 0 , 2NC+3 NA = 0 và G là trọng tâm tam giác ABC
a/Chứng minh: AB+CD = AD+ CB .
b/ Tính AM theo AB và AN theo AC.
c/ Chứng minh ba điểm M,G, N thẳng hàng.