Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thao Thanh

Cho tứ giác ABCD thay đổi, luôn nội tiếp đường tròn (O;\(\sqrt{5}\)cm) và có hai đường chéo vuông góc với nhau tại I sao cho IO=1cm. Diện tích tam giác ICD đạt GTLN là ... \(cm^2\) .

Huy Bùi
9 tháng 4 2015 lúc 21:13

Nhận xét : A, B, C, D có vai trò bình đẳng nhau nên nếu O không thuộc miền trong ∆ICD, chẳng hạn O thuộc miền trong ∆IAD, khi đó dễ dàng thấy S(ICD) < S(IAD). Vậy chỉ xét trường hợp O thuộc miền trong ∆ICD. 
Vẽ OH _|_ AC tại H; Vẽ OK _|_ BK tại K => IK = OH; IH = OK. Đặt IC = a > 0; ID = b > 0; 
Ta có: CH = IC - IH <=> CH² = IC² + IH² - 2IC.IH <=> OC² - OH² = IC² + OK² - 2IC.OK <=> 2IC.OK = IC² - OC² + (OH² + OK²) = IC² - OC² + OI² <=> 2a.OK = a² - 5 + 1 = a² - 4 <=> 2OK = a - 4/a <=> 4OK² = a² + 16/a² - 8 (1) 
Tương tự : 4OH² = b² + 16/b² - 8 (2) 
(1) + (2) : a² + b² + 16(1/a² + 1/b²) - 16 = 4(OH² + OK²) = 4OI² = 4 
<=> a² + b² + 16(1/a² + 1/b²) = 20 
<=> ab + 16/ab ≤ 10 (vì 2ab ≤ a² + b² ; 2/ab ≤ 1/a² + 1/b²) 
<=> S² - 5S + 4 ≤ 0 ( với S = ab/2 = S(ICD)) 
<=> (S - 5/2)² ≤ 9/4 
<=> - 3/2 ≤ S - 5/2 ≤ 3/2 
<=> 1 ≤ S ≤ 4 
Vậy Max S = 4 khi a = b = 2√2; Min S = 1 khi a = b = √2 
Nguồn: https://vn.answers.yahoo.com/question/index?qid=20150404221719AAVrhVe


Các câu hỏi tương tự
Hoàng Như Ngọc
Xem chi tiết
Nguyễn Minh Đức
Xem chi tiết
Nguyễn Thúy Nga
Xem chi tiết
Lê Duy Kiều
Xem chi tiết
Nguyễn Minh Dũng
Xem chi tiết
Minh Triều
Xem chi tiết
Nguyễn Hùng Mạnh
Xem chi tiết
Nguyễn Yến Nhi
Xem chi tiết
laiduytung
Xem chi tiết