Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Incognito

Cho tứ giác ABCD nội tiếp đường tròn (O) với AC cắt BD tại P, M là trung điểm AD. K và L lần lượt là hình chiếu của P lên AB và CD. Gọi S,T lần lượt là tâm ngoại tiếp các tam giác KMA và LMD. Chứng minh rằng: KS.BT=CS.LT ?

Nguyễn Tất Đạt
25 tháng 1 2019 lúc 17:48

A C B D P O M K L S T E F

Gọi E và F lần lượt là trung điểm của PA và PD. 

Ta thấy: \(\Delta\)PAK vuông tại K có trung tuyến KE => KE = 1/2.AP. Mà MF là đường trung bình \(\Delta\)PAD

Nên KE = MF (=1/2AP). Tương tự: FL = ME. Ta có: ^KEM = ^MFL (= ^PFM + Sđ(BC = ^PEM + Sđ(BC )

Suy ra: \(\Delta\)KEM = \(\Delta\)MFL (c.g.c) => KM = ML (Cạnh tương ứng) 

Ta thấy: ^KML = ^EMF - ^EMK - ^FML = 1800 - ^PFM - ^FLM - ^FML (^EMK = ^ FLM vì \(\Delta\)KEM = \(\Delta\)MFL)

= ^PFL = 2.^PDL = 2.^PAK => ^KML = 2.^PDL = 2.^PAK

Ta lại có: ^BDT = ^BDC - ^TDL = 1/2.^KML - (900 - ^DML) = 1/2.^KML - ^OML = ^OMK - 1/2.^KML

= ^OMK - ^PAK = ^SAK - ^PAK = ^CAS => ^BDT = ^CAS

Mặt khác: ^MTL = ^AOC = 2.^MDL (=Sđ(AC ) => \(\Delta\)MLT ~ \(\Delta\)ACO (g.g)

=> \(\frac{LT}{CO}=\frac{ML}{AC}\)=> LT. AC = ML.CO = MK.BO (Do ML = MK). Tương tự \(\Delta\)KSM ~ \(\Delta\)BOD

Từ đó; LT.AC = MK.BO = KS.BD => DT.AC = AS.DB => \(\frac{DT}{AS}=\frac{DB}{AC}\). Kết hợp với ^BDT = ^CAS (cmt)

=> \(\Delta\)CSA ~ \(\Delta\)BTD (c.g.c) => \(\frac{CS}{BT}=\frac{SA}{TD}=\frac{KS}{LT}\)=> KS.BT = CS.LT (đpcm).


Các câu hỏi tương tự
Ngọc Phạm
Xem chi tiết
Nguyễn Tất Đạt
Xem chi tiết
Nguyễn Đức Kiên
Xem chi tiết
Nguyễn Tất Đạt
Xem chi tiết
nguyển thị thảo
Xem chi tiết
Mai_Anh_Thư123
Xem chi tiết
Lương Minh Thiện
Xem chi tiết
Nguyễn Hoàng Long Ánh
Xem chi tiết
Hien Thu
Xem chi tiết