Một số bài toán hay về tâm nội tiếp:
Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.
Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các tam giác AID,BIC. M,N là trung điểm các cạnh AB,CD. Chứng minh rằng MN chia đôi ST.
Bài 3: Cho tam giác ABC, đường tròn (I) nội tiếp tam giác ABC tiếp xúc BC,CA,AB tại D,E,F. Kẻ DH vuông góc EF tại H, G là trung điểm DH. Gọi K là trực tâm tam giác BIC. Chứng minh rằng GK chia đôi EF.
Bài 4: Cho tam giác ABC ngoại tiếp (I), (I) tiếp xúc với BC,CA,AB tại D,E,F. Gọi AI cắt DE,DF tại K,L; H là chân đường cao hạ từ A của tam giác ABC, M là trung điểm BC. Chứng minh rằng bốn điểm H,K,L,M cùng thuộc một đường tròn có tâm nằm trên (Euler) của tam giác ABC.
Cho tứ giác ABCD nội tiếp đường tròn (O) với AC cắt BD tại P, M là trung điểm AD. K và L lần lượt là hình chiếu của P lên AB và CD. Gọi S,T lần lượt là tâm ngoại tiếp các tam giác KMA và LMD. Chứng minh rằng: KS.BT=CS.LT ?
Cho tứ giác ABCD nội tiếp đường tròn tâm O (AB>CD). GỌi giao điểm của AC và BD là I. Đường tròn ngoại tiếp tam giác ADI cắt AB và CD lần lượt tại E và F, EF cắt AC và BD tại M, N.
a, Chứng minh IE = IF
b, Chứng minh EF//BC và tứ giác AMND nội tiếp
c, Gọi K là tâm đường tròn ngoại tiếp tam giác ADI.
Chứng minh rằng KI vuông góc với BC
(Mình cần làm giúp phần (c) thôi ạ, cảm ơn)
Cho tứ giác ABCD nội tiếp (O;R) sao cho tia BA và CD cắt nhau tại I, tia DA và CB cắt nhau tại K (I,K) nằm ngoài (O) .Phân giác của góc BIC cắt AD,BC lần lượt tại Q,N. Phân giác của góc AKB cắt AB, CD lần lượt tại M,P
a) Chứng minh tứ giác MNPQ là hình thoi
b) Gọi giao điểm 2 đường chéo của MNPQ là G. Chứng minh tam giác IGC đồng dạng tam giác IDG và IK2 = ID.IC + KB.KC
c) Gọi F là trung điểm AB, J là hình chiếu của F trên OB. L là trung điểm của FJ chứng minh AL vuông góc OL
cho tam giác ABC ngoại tiếp đường tròn tâm i gọi D ,E ,F lần lượt là các tiếp điểm của các cạnh BC CA AB với đường tròn tâm i .gọi m là giao điểm của AB và BC, AD cắt đường tròn tâm i tại n .gọi k là giao điểm của AC và EF .a)Chứng minh rằng IKND là tứ giác nội tiếp .b) chứng minh rằng MN là tiếp tuyến của đường tròn tâm I.
1 Cho hình thang ABCD ( BC // AD), hai đường chéo AC và BD cắt nhau tại O, góc BOC bằng 60 độ. Gọi M, N,P,Q lần lượt là trung điểm của BC , OA, OB, AB, CD. a)Chứng minh tứ giác DMNC nội tiếp
b) tam giác MNQ đều C
c) Gọi H là trực tâm tam giác MNQ. Chứng minh H, O , I thẳng hàng
cho tứ giác ABCD có AD=BC, lấy E thuộc BC, F thuộc AD sao cho DF=BE, EF sao BD, AC lần lượt tạ Q và R, I là giao điểm của AC và BD, S là giao điểm của đường tròn ngoại tiếp tam giác AID và tam giác IBC, chứng minh QIRS là tứ giác nội tiếp
Cho tam giác ABC nhọn nội tiếp (O), có đường cao AH, gọi M,N lần lượt là hình chiếu của H trên AB,AC. MN cắt (O) tại D, cắt BC tại K. Gọi I là trung điểm AH, IK cắt AB, AC lần lượt tại E và F.
CM tứ giác BMCN nội tiếp
Tam giác ADH cân
I là trung điểm EF
Cho tam giác ABC có AC > AB. Đường tròn tâm I nội tiếp tam giác ABC tiếp xúc với AB và BC lần lượt tại D và E. Gọi M và N theo thứ tự là trung điểm của cạnh AC và BC. Gọi K là giao điểm của MN và AI. Gọi H là giao điểm của DE và CI. Chứng minh rằng:
a) Bốn điểm I, E, K, C cùng thuộc một đường tròn.
b) Ba điểm D, E, K thẳng hàng.
c) Bốn điểm A, H, K, C cùng thuộc một đường tròn.