cho tứ giác ABCD có AB+BD lớn hơn hoặc bằng AC+CD..c/ m : AB < AC
1) Tứ giác ABCD có AB // CD, AB < CD, AD = BC. Chứng minh ABCD là hình thang cân
2) Tứ giác ABCD có góc A = góc B, BC = AD
a) Chứng minh ABCD là hình thang cân
b) Cho biết AC vuông góc vs BD và đường cao AH = 4cm. Tính AB + CD
1) Tứ giác ABCD có AB // CD, AB < CD, AD = BC. Chứng minh ABCD là hình thang cân
2) Tứ giác ABCD có góc A = góc B, BC = AD
a) Chứng minh ABCD là hình thang cân
b) Cho biết AC vuông góc vs BD và đường cao AH = 4cm. Tính AB + CD
1/Chứng minh rằng trong tứ giác:
Độ dài của bất kì cạnh nào cũng bé hơn tổng độ dài 3 cạnh còn lại
2/Cho tứ giác ABCD (AB không song song với CD). I,J theo thứ tự là trung điểm của các đường chéo AC, BD. Chứng minh rằng AC+BD+2IJ < AB+BC+CD+AD
TỨ GIÁC ABCD CÓ AB+BD BÉ HƠN HOẶC BẰNG AC+CD .C/M: AB BÉ HƠN AC
1. Cho hình bình hành ABCD có AB= 2AD. Gọi M, N theo tứ tự là trung điểm của các cạnh AB, CD. Gọi P và Q lần lượt là giao điểm của BN với CM và của AN với DM
a. Tứ giác AMND là hình gì? Vì sao?
b. Chứng minh: tứ giác MPNQ là hình chữ nhật
c. Tìm điều kiện của tứ giác ABCD để MPNQ là hình vuông
d. Chứng minh: bốn đường thẳng AC, BD, MN, QP đồng qui
2. Cho hình bình hành ABCD. Kẻ AN, CM vuông góc với BD, N và M thuộc BD
a. Chứng minh DN = BM
b. Chứng minh Tứ giác ANCM là hình bình hành
c. Gọi K là điểm đối xứng với A qua N. Tứ giác DKCB là hình gì? Vì sao?
d. Tia AM cắt tia KC tại P. Chứng minh các đường thẳng AC, PN, KM đồng qui
Cho tứ giác ABCD có E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA
a) Chứng minh tứ giác EFGH là hình bình hành
b) Hai đường chéo AC và BD của tứ giác ABCD có điều kiện gì thì:
* EFGH là hình thoi
* EFGH là hình chữ nhật
* EFGH là hình vuông
Cho tứ giác ABCD có góc B + góc D = 90 độ
Chứng minh AB2.CD2 + AD2.BD2 = AC2.BD2
Cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E, F lần lượt là hình chiếu của B và D xuống đường thẳng AC. Gọi H và K lần lượt là hình chiếu của C xuống đường thẳng AB và AD.
a) Tứ giác BEDF là hình gì? Hãy chứng mình điều đó ?
b) Chứng mình rằng: CH.CD = CB.CK
c) Chứng minh rằng: AB.AH + AD.AK = AC^2