cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy D, trên tia đối của tia CB lấy điểm E sao cho BD=CE.
a)chứng minh tam giác ABD= tam giác ACE.
b) gọi BF, CM lần lượt là đường cao của tam giác ABD và tam giác ACE. chứng minh tam giác AFM cân
cho tam giác ABC vuông tại A, đường cao AD . trên tia đối của tia CB lấy điểm E sao cho AC là tia phân giác của góc DAE.
a\ cmr : tam giác ADB đồng dạng với tam giác CAB
b\ bt AB=12 cm, AC=9cm . tính AD
c\ cmr : CDtrên CE=BD trên DE
cho tam giác ABC vuông tại A, đường cao AD . trên tia đối của tia CB lấy điểm E sao cho AC là tia phân giác của góc DAE.
a\ cmr : tam giác ADB đồng dạng với tam giác CAB
b\ bt AB=12 cm, AC=9cm . tính AD
c\ cmr : CDtrên CE=BD trên DE
Cho hình thang ABCD (AB//CD)
a) CMR nếu hai tia phân giác của hai góc A và D cùng đi qua trung điểm của cạnh bên BC thì cạnh bên AD bằng tổng hai đáy
b)CMR nếu AD=AB+CD thì hai tia phân giác của hai góc A và D cắt nhau tại trung điểm của cạnh bên BC
c)tam giác cân ABC(AB=AC) kẻ đường phân giác AD của góc A trên AD lấy điểm O. Tia BO cắt AC ở E, tia CO cắt AB ở F. Chứng minh rằng tứ giác BFEC là hình thang cân
Cho tứ giác ABCD có góc A = góc D = 90độ, AB > CD và AD = AB + CD. Gọi O là trung điểm của BC. Tia AO cắt tia DC ở E
a) CM Tam giác AOB = tam giác EOC và tính các góc của tam giác ADE
b) Lấy điểm M trên cạnh AD sao cho AM = CD
CM tam giác BAM = tam giác MDC và tam giác OAM = tam giác ODC
c) Lấy diểm N trên cạnh AB sao cho BN = AM
BM cắt DN tại K. Tính góc MKN
bài 1 cho tam giác ABC vuông tại A đường phân giác AD , gọi E,F lần lượt là hình chiếu của D trên AB và AC . CM tứ giác ADEF là hình vuông
bài 2 cho hình vuông ABCD có góc A=góc D = 90 độ , DC=2AB=2AD . Kẻ BD vuông góc DC ( K thuộc DC)
a, CM tứ giác ABKD là hình vuông
bài 3 cho hình vuông ABCD , có cạnh 4cm , lấy điểm E trên BC , điểm F trên CD sao cho góc EAF = 45 . Trên tiaa đối của tia DC lấy K sao cho DK=BE
a, tính góc KAF
b, tính chu vi tam giác CEF
Cho tam giác ABC (AB<AC), AD là đường phân giác của góc A(D thuộc BC). Trên tia đối của tia DA lấy điểm I sao cho góc ACI = góc ABD. Chứng minh a, tam giác ABD đồng dạng tam giác ACI b, tam giác CDI cân c,AD.CD=AI.BD
Bài 1: Cho tam giác ABC.Trên AC lấy 1 điểm B' sao cho AB'=AB, trên AC lấy điểm C' sao cho AC'=AC. CMR tứ giác BB'CC' là hình thang.
Bài 2:CMR: nếu 1 tứ giác có phân giác trong của hai góc kề với một cạnh vuông góc với nhau thì tứ giác đó là hình thang.
Bài 3: Cho hình thang ABCD(AB//CD). Hai đường phân giác của góc A và B cắt nhau tại điểm K thuộc cạnh đáy CD:. CM AD+BC=CD.
Bài 4: a)Tính số đo của các góc trong tứ giác ABCD, biết góc A:góc B:góc C:góc D=2:2:1:1.
b)Tứ giác ABCD là hình gì?Vì sao?
Bài 5:Cho tam giác ABC cân tại A. Kẻ các phân giác BD,CE của các góc B và C.
a)Cm: Tam giác ADB= tam giác AEC.
b)Cm: Tứ giác BEDC là hình thang cân có cạnh bên bằng 1/2 đáy.
Bài 6:Cho tam giác ABC vuông tại A có góc ABC=60 độ. Kẻ tia Ax song song với BC.Trên tia Ax lấy điểm D sao cho AD=BC.
a) Tính số đo các góc BAD và BAC.
b)Cm tứ giác ABCD là hình thang cân.
Mình đang cần gấp nên mong các bạn giải giùm mình. ^-^
1/ cho tứ giác lồi ABCD có B+D=180 độ, CB=CD. CMR AC là tia p/giác của góc BAD
2/ cho tứ giác lồi ABCD, hai cạnh AD và BC cắt nhau tại E, hai cạnh DC và AB cắt nhau tại F. Kẻ 2 p/giác của 2 góc CED và BFC cắt nhau tại I. Tính góc EIF theo các góc trong của tứ giác ABCD
3/ Cho tứ giác ABCD.
a) CMR 1/2 p < AC+BD < p (p là chu vi tứ giác)
b) C/M AB+CD < AC+BD
c) Biết chu vi tam giác ABD nhỏ hơn chu vi tam giác ACD, chứng minh AB<AC.