(SAC) có: \(KM\cap AC=I\)
(ABC) có: \(IN\cap AB=J\)
Ta được thiết diện của hình chóp và (KMN) là tứ giác KJNM.
(SAC) có: \(KM\cap AC=I\)
(ABC) có: \(IN\cap AB=J\)
Ta được thiết diện của hình chóp và (KMN) là tứ giác KJNM.
Cho tứ diện SABC. Gọi K; N trung điểm SA và BC. M là điểm thuộc đoạn SC sao cho: 3SM = 2MC. Gọi E là giao điểm của AC và KM; NE cắt AB tại I. Tìm khẳng định đúng?
A. thiết diện của hình chóp cắt bởi mp ( MNK) là tam giác MNK và I A I B = 2 3
B. thiết diện của hình chóp cắt bởi mp ( MNK) là tam giác MNK và I A I B = 1 3
C. thiết diện của hình chóp cắt bởi mp ( MNK) là tứ giác MNIK và I A I B = 2 3
D. thiết diện của hình chóp cắt bởi mp ( MNK) là tam giác MNE và I A I B = 2 3
cho hình chóp s.abcd có đáy là hình bình hành. Gọi M,N lần lượt là trung điểm của các cạng SA,SC, và G là trọng tâm của △ABC
a) tìm giao tuyến của hai mặt phẳng (SAC) và (SBD)
b) tìm giao điểm BC và mặt phẳng (GMN)
c) xác định thiết diện của hình chóp khi cắt bởi mặt phẳng (GMN)
Cho tứ diện đều ABCD cạnh a. M là trung điểm cảu BC, K là điểm thuộc BD sao cho BK = 2KD. I là trung điểm của AC. Tính diện tích thiết diện tạo bởi mặt phẳng (IMK) và hình chóp.
A . a 2 4
B . a 2 51 26
C . 5 a 2 51 144
D . 4 a 2 9
Cho hình chóp tứ giác S.ABCD. Gọi M, N là trung điểm của AB và BC. Mặt phẳng (α) thay đổi luôn đi qua MN cắt SC, SA tại P và Q
1-Tìm giao điểm của AD và SD với (α)
2-Tìm thiết diện của hình chóp bị cắt bởi (α)
3-Chứng minh rằng nếu thì 3 điểm S, B ,I thẳng hàng
Cho hình chóp SABC. gọi N là điểm nằm trên cạnh SB. M , P là điểm thuộc miền trong mặt phẳng ( SAB ) và (SBC). Tìm thiết diện tạo bởi (MNP) và hình chóp
cho hình chóp S abcd có đáy abcd là hình tứ giác lồi. Tìm giao tuyến của 2 mặt phẳng SAC và SBD. Gọi M là điểm trên SA sao cho SA=3SM, N là điểm trên SB sao cho SN=2SB. tìm giao tuyến của 2 mặt phẳng CMN và ABCD
cho hình chóp S abcd có đáy abcd là hình tứ giác lồi. Tìm giao tuyến của 2 mặt phẳng SAC và SBD. Gọi M là điểm trên SA sao cho SA=3SM, N là điểm trên SB sao cho SN=2SB. tìm giao tuyến của 2 mặt phẳng CMN và ABCD
Cho hình chóp S.ABC có SA = SB = SC = a, A S B ^ = B S C ^ = C S A ^ = α . Gọi là mặt phẳng đi qua A và các trung điểm của SB, SC. Tính diện tích thiết diện S của hình chóp cắt bởi mặt phẳng ( β )
A . S = a 2 2 7 cos 2 α - 16 cos α + 9
B . S = a 2 2 7 cos 2 α - 6 cos α + 9
C . S = a 2 8 7 cos 2 α - 6 cos α + 9
D . S = a 2 8 7 cos 2 α - 16 cos α + 9
Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB=BC=a ,AD=2a Cạnh SA=2a và SA vuông góc với mặt phẳng (ABCD). Gọi M là trung điểm của cạnh AB và ( α ) là mặt phẳng qua M và vuông góc với AB. Diện tích thiết diện của mặt phẳng ( α ) với hình chóp S.ABCD là