Tứ diện SABC có ba đỉnh A, B, C tạo thành tam giác vuông cân đỉnh B và AC = 2a, có cạnh SA vuông góc với mặt phẳng (ABC) và SA = a
a) Chứng minh mặt phẳng (SAB) vuông góc với mặt phẳng (SBC).
b) Trong mặt phẳng (SAB) vẽ AH vuông góc với SB tại H, chứng minh AH ⊥ (SBC).
C) Tính độ dài đoạn AH.
d) Từ trung điểm O của đoạn AC vẽ OK vuông góc với (SBC) cắt (SBC) tại K. Tính độ dài đoạn OK.
Tứ diện SABC có SA vuông góc với mặt phẳng (ABC). Gọi H và K lần lượt là trực tâm của các tam giác ABC và SBC. Chứng minh rằng:
a) AH, SK và BC đồng quy.
b) SC vuông góc với mặt phẳng (BHK) và (SAC) ⊥ (BHK)
c) HK vuông góc với mặt phẳng (SBC) và (SBC) ⊥ (BHK)
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B , AB =a, BC =a 3 Biết rằng SA vuông góc với mặt phẳng đáy và diện tích xung quanh của khối chóp S.ABC bằng 5 a 2 3 2 . Tính theo a khoảng cách d từ A đến mặt phẳng (SBC) gần với giá trị nào nhất sau đây ?
A. 0,72a
B. 0,9a
C. 0,8a
D. 1,12a
Câu 1. Cho hình chóp S ABC . có SA vuông góc với ABC và đáy ABC đều cạnh a. Biết SA=3a/2.Gọi H là trung điểm của BC.
a. Tính góc giữa hai mặt phẳng SBC và ABC ?
b. Tính diện tích của tam giác ABC từ đó suy ra diện tích tam giác SBC ?
c. Chứng minh SBC vuông góc với SAH
Câu 2. Cho hình chóp tam giác đều S ABC . có cạnh đáy bằng a và đường cao SH bằng cạnh đáy. Tính số đo góc hợp bởi mặt bên và mặt đáy
Cho tứ diện S.ABC có các tam giác SAB, SAC và ABC vuông cân tại A, SA=a. Gọi α là góc giữa hai mặt phẳng (SBC) và (ABC) bằng
A. 3
B. 1 2
C. 2
D. 1 3
Cho tứ diện S.ABC có SA vuông góc với mặt phẳng (ABC). Gọi H , K lần lượt là trực tâm của tam giác ABC và SBC.
a) Chứng minh ba đường thẳng AH, SK, BC đồng quy.
b) Chứng minh rằng SC vuông góc với mặt phẳng (BHK) và HK vuông góc với mặt phẳng (SBC).
c) Xác định đường vuông góc chung của BC và SA.
1,Cho hình chóp SABC có đáy ABC là tam giác vuông cân tại B, SA vuông góc với mặt đáy, SA=a√6,AB=a.
a/Chứng minh các mặt bên của hình chóp là các tam giác vuông
b/ Xác định và tính góc giữa đường thẳng SC và mặt đáy (ABC)
2,Cho hình chóp S. MNPQ là hình vuông cạnh a SM vuông góc với mặt phẳng (MNPQ),SM=a√2.
a/ Chứng minh QN vuông góc với mặt phẳng (SMP).
b/ Trong tam giác SMQ dựng đường cao MH, chứng minh MH vuông góc với SP.
c/ Xác định và tính khoảng cách giữa hai đường thẳng MN và SQ
GIÚP MÌNH VỚI Ạ
MÌNH CẢM ƠN 💙💙💙
Cho khối tứ diện ABCD có ABC và BCD là các tam giác đều cạnh a. Góc giữa hai mặt phẳng (ABC) và (BCD) bằng 60 O . Tính thể tích V của khối tứ diện ABCD theo a: