Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho tứ diện đều ABCD có cạnh bằng a. Gọi E,F lần lượt là các điểm đối xứng của B qua C,D và M là trung điểm của đoạn thẳng AB. Gọi (T) là thiết diện của tứ diện ABCD khi cắt bởi mặt phẳng (MEF). Tính diện tích S của thiết diện (T)

Cao Minh Tâm
11 tháng 4 2017 lúc 4:28

Đáp án D

Vẽ AO ⊥ (BCD, MH (BCD). Gọi K là trung điểm EF, ta có (ABK) (BCD), mp (ABK) chứa AO, MH và  là mặt phẳng trung trực của đoạn CD và EF.

Gọi J là trung điểm CD; G là giao điểm của MK và AJ; I là giao điểm của MK và AO.

Gọi N, P lần lượt là giao điểm của ME với AC, MF với AD. Khi đó (MNP) chính là thiết diện khi cắt tứ diện đều ABCD bởi mp (MEF). Vì BE=BF=2a nên ta cũng có MN=MP, hay tam giác MNP cân tại M, đường cao MG.

Để tính diện tích MNP, ta cần đi tìm MG và NP.

Vì G là giao điểm của các đường trung tuyến AJ và MK trong tam giác ABK nên G là trọng tâm của tam giác ABK, do đó MG = 1 3 MK (1) và AG = 2 3 AJ hay NP = 2 3 CD =  2 a 3  (vì NP//CD//EF và chứng minh dựa vào các tam giác đồng dạng, tính chất tỉ số đồng dạng và các đường cao; đường cao AG, AJ trong tam giác ANP và ACD).

Áp dụng nhanh: tam giác đều cạnh a có độ dài mỗi đường cao là 3 2 a  (và diện tích là 3 4 a 2 ).

Tam giác đều BCD cạnh a có đường cao BJ =  3 2 a , trọng tâm O, suy ra BO =  2 3 BJ = a 3 . Lại vì MH là đường trung bình trong tam giác vuông ABO nên

Vì tam giác MHK vuông tại H nên ta có

Quay lại (1), ta có

từ đó tính được diện tích tam giác MNP là


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết