Trong mặt phẳng (ACD) : FN cắt CD tại H ⇒ H ∈ (EFG) và H ∈ (BCD) ⇒ H ∈ MG là giao tuyến của (EFG) và (BCD) hay FN, MG, CD đồng quy tại H ⇒ M, N, F, G đồng phẳng
Đáp án D
Trong mặt phẳng (ACD) : FN cắt CD tại H ⇒ H ∈ (EFG) và H ∈ (BCD) ⇒ H ∈ MG là giao tuyến của (EFG) và (BCD) hay FN, MG, CD đồng quy tại H ⇒ M, N, F, G đồng phẳng
Đáp án D
Cho tứ diện ABCD. Gọi E; F; G là điểm lần lượt thuộc các cạnh AB; AC; BD sao cho EF cắt BC tại I; EG cắt AD tại H . Ba đường nào sau đây đồng quy?
A. CD; EF; EG
B. CD; IG; HF
C. AB; IG; HF
D. AC; IG; BD
Cho tứ diện ABCD và ba điểm E,F,G lần lượt nằm trên ba cạnh AB,BC,CD mà không trùng với các đỉnh (FG không song song với BD). Thiết diện của hình tứ diện ABCD khi cắt bởi mp(EFG) là:
A. Một tứ giác
B. Một tam giác
C. Một ngũ giác
D. Một đoạn thẳng
Cho tứ diện ABCD. Trên ba cạnh AB, AC, AD lần lượt lấy các điểm B', C', D' sao cho đường thẳng B'C'cắt đường thẳng BC tại K, đường thẳng C'D' cắt đường thẳng CD tại J, đường thẳng D'B' cắt đường thẳng DB tại I.
a) Chứng minh ba điểm I, J, K thẳng hàng.
b) Lấy điểm M ở giữa đoạn thẳng BD; điểm N ở giữa đoạn thẳng CD sao cho đường thẳng MN cắt đường thẳng BC và điểm F nằm bên trong tam giác ABC. Xác định thiết diện của tứ diện ABCD khi cắt bởi mặt phẳng (MNF).
Cho tứ diện ABCD và 3 điểm E, F, G lần lượt nằm trên 3 cạnh AB, BC, CD mà không trùng với các đỉnh, thiết diện của hình tứ diện ABCD khi cắt bởi mp(EFG) là:
A. một đoạn thẳng
B. một tam giác
C. một tứ giác
D. một hình thang
Cho tứ diện ABCD. Gọi M,K lần lượt là trung điểm của BC và AC. N là điểm trên cạnh BD sao cho BN=2ND. Gọi F là giao điểm của AD và mp(MNK). Trong các mệnh đề sau, mệnh đề nào đúng?
A. AF=3FD
B. AF=2FD
C. AF=FD
D. FD=2AF
Cho tứ diện ABCD. Gọi M,N là 2 điểm lần lượt nằm trên cạnh AB,AD và MN không song song BD. Đường thẳng MN cắt BD tại E. Gọi O là điểm nằm trong tam giác BCD. Tìm giao điểm của đường thẳng CD và mp (OMN)
Cho điểm A không nằm trên mặt phẳng (α) chứa tam giác BCD. Lấy E và F là các điểm lần lượt nằm trên các cạnh AB , AC.
a) Chứng minh đường thẳng EF nằm trong mặt phẳng (ABC).
b) Giả sử EF và BC cắt nhau tại I, chứng minh I là điểm chung của hai mặt phẳng (BCD) và (DEF).
Cho hình thoi ABCD tâm O. Gọi E, F, M, N lần lượt là trung điểm các cạnh AB, CD, BC, AD. P là phép đồng dạng biến tam giác OCF thành tam giác CAB. Tìm mệnh đề sai trong các mệnh đề sau:
A. P hợp thành bởi phép đối xứng tâm O và phép vị tự tâm A tỉ số k = 2
B. P hợp thành bởi phép đối xứng trục AC và phép vị tự tâm C tỉ số k = 2
C. P hợp thành bởi phép vị tự tâm C tỉ số k = 2 và phép đối xứng tâm O
D. P hợp thành bởi phép đối xứng trục BD và phép vị tự tâm O tỉ số k = -1
cho tứ diện ABCD và điểm M nằm trong tứ diện, qua M dựng các mặt phẳng (a) song song (BCD), (b) song song (ACD), (c) song song (ABD), (d) song song (ABC). Biết (a) cắt AB tại E, (b) cắt BC tại F, (c) cắt CD tại P, (d) cắt AD tại Q
cmr: \(\sqrt{\dfrac{EA}{EB}}+\sqrt{\dfrac{FB}{FC}}+\sqrt{\dfrac{PC}{PD}}+\sqrt{\dfrac{QD}{QA}}\ge4\sqrt{3}\)