Đáp án D
V A B ' C ' D V A B C D = A B ' . A C ' . A D A B . A C . A D = 1 4
Đáp án D
V A B ' C ' D V A B C D = A B ' . A C ' . A D A B . A C . A D = 1 4
Cho tứ diện ABCD. Gọi B' và C' lần lượt là trung điểm của AB và AC. Tỉ số thể tích của khối tứ diện AB'C'D và khối tứ diện ABCD bằng:
A. 1/2 B. 1/4
C. 1/6 D. 1/8.
Cho tứ diện ABCD. Gọi B’ và C’ lần lượt là trung điểm của AB và AC. Khi đó tỉ số thể tích của khối tứ điện AB’C’D và khối tứ diện ABCD bằng:
A. 1 2
B. 1 4
C. 1 6
D. 1 8
Cho tứ diện ABCD. Gọi B’ và C’ lần lượt là trung điểm của AB và AC. Khi đó tỉ số thể tích của khối tứ điện AB’C’D và khối tứ diện ABCD bằng:
A. 1 2
B. 1 4
C. 1 6
D. 1 8
Cho tứ diện ABCD. Gọi B' và C' lần lượt là trung điểm của AB và AC. Tính tỉ số thể tích của khối tứ diện AB'C'D và khối tứ diện ABCD?
A. 1 4
B. 1 2
C. 1 6
D. 1 8
Cho tứ diện ABCD. Gọi B’, C’ lần lượt là trung điểm của AB và CD. Khi đó, tỷ số thể tích của khối đa diện AB’C’D và khối đa diện ABCD bằng
A. 1 8
B. 1 6
C. 1 4
D. 1 2
Cho hình lập phương ABCD. A'B'C'D' có cạnh bằng a. Gọi O và O' lần lượt là tâm các hình vuông ABCD và A'B'C'D'. Gọi M, N lần lượt là trung điểm của các cạnh B'C' và CD. Tính thể tích khối tứ diện OO'MN.
A. a 3 8
B. a3
C. a 3 12
D. a 3 24
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối chứa điểm A có thể tích V. Tính V.
Cho tứ diện ABCD có thể tích bằng V. Gọi B’ và D’ lần lượt là trung điểm của cạnh AB và AD. Mặt phẳng(CB'D’) chia khối tứ diện thành hai phần. Tính theo V thể tích khối chóp C.B’D’DB?
A. 3 V 2
B. V 4
C. V 2
D. 3 V 4
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối đa diện chứa đỉnh A có thể tích V . Tính V .
A. 7 2 a 3 216
B. 11 2 a 3 216
C. 13 2 a 3 216
D. 2 a 3 18