Cho tứ diện ABCD có AB =4a, CD= 6a, các cạnh còn lại đều bằng a 22 .Tính bán kính của mặt cầu ngoại tiếp tứ diện ABCD.
A. 5 a 2
B. 3a
C. a 85 3
D. a 79 3
Cho tứ diện ABCD có AB=4a, CD=6a các cạnh còn lại có độ dài bằng a 22 Tính bán kính của mặt cầu ngoại tiếp tứ diện ABCD
Cho hình chóp S.ABCD có ABC=ADC= 90 o cạnh bên SA vuông góc với mặt phẳng ABCD, góc tạo bởi SC và mặt phẳng đáy bằng 60 o , CD=a và tam giác ADC có diện tích bằng Diện a 2 3 2 . Diện tích mặt cầu S m c ngoại tiếp hình chóp S.ABCD là
Cho tứ diện ABCD có ABC là tam giác cân tại A, người ta để một quả cầu có bán kính r = 1 vào bên trong tứ diện từ đáy ABC sao cho các cạnh AB, BC, CA lần lượt tiếp xúc với quả cầu và phần quả cầu bên trong tứ diện có thể tích bằng phần quả cầu bên ngoài tứ diện. Biết khoảng cách từ D đến (ABC) bằng 2. Tính thể tích nhỏ nhất của tứ diện ABCD?
Tính diện tích mặt cầu ngoại tiếp một hình chóp tứ giác đều có cạnh bên bằng 2 và cạnh đáy bằng 1
A. 32 π 7
B. 8 π 7
C. 128 π 21 14
D. 16 π 14
Cho khối tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc và OA = OB = OC = 6. Tính bán kính R mặt cầu ngoại tiếp tứ diện OABC.
Cho tứ diện ABCD có tam giác ABC là tam giác cân với BAC= 120 o ,AB=AC=a Hình chiếu của D trên mặt phẳng ABC là trung điểm của BC. Tính bán kính R của mặt cầu ngoại tiếp tứ diện ABCD biết thể tích của tứ diện ABCD là V = a 3 16
Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, SA = 2a và SA vuông góc với mặt đáy (ABCD). Biết AD = 2a, AB = BC = CD = a. Diện tích S của mặt cầu ngoại tiếp hình chóp S.ABCD bằng bao nhiêu?
Cho tứ diện ABCD có AB = 5 các cạnh còn lại bằng 3, khoảng cách giữa 2 đường thẳng AB và CD bằng
A. 2 2
B. 3 3
C. 2 3
D. 3 2