Cho ∆𝐴𝐵𝐶 có trung tuyến 𝐴𝐷, trọng tâm 𝐺. Qua 𝐺 kẻ đường thẳng 𝑑 cắt các cạnh 𝐴𝐵, 𝐴𝐶. Gọi 𝐸 là trung điểm 𝐴𝐺. Gọi 𝐹, 𝐻, 𝐼, 𝐽, 𝐾 là hình chiếu của 𝐵, 𝐴, 𝐸, 𝐷, 𝐶 trên đường thẳng 𝐷. Chứng minh rằng:
a) 𝐸𝐼 = 𝐷𝐽 và 𝐷𝐽 =𝐴𝐻/2. b) 𝐵𝐹 + 𝐶𝐾 = 𝐴𝐻
Cho ∆𝐴𝐵𝐶 có 𝐻 là trực tâm, 𝐺 là trọng tâm. Các đường thẳng vuông
góc với 𝐴𝐵 tại 𝐵 và 𝐴𝐶 tại 𝐶 cắt nhau ở 𝐷. Gọi 𝐸, 𝐹, 𝐼, 𝐽 là trung điểm của
các đoạn thẳng 𝐵𝐶, 𝐴𝐷, 𝐴𝐺, 𝐻𝐺.
a) Chứng minh rằng tứ giác 𝐵𝐻𝐶𝐷 là hình bình hành.
b) Biết 𝐵𝐴𝐶 ̂ = 60^𝑜, tính số đo góc 𝐵𝐻𝐶 ̂.
c) Chứng minh rằng 𝐻, 𝐸, 𝐷 thẳng hàng.
d) Chứng minh rằng 𝐴𝐻 = 2𝐹𝐸 và 𝐹𝐸 ⊥ 𝐵𝐶.
e) Chứng minh rằng 𝐴𝐻 = 2𝐼𝐽 và 𝐻, 𝐺, 𝐹 thẳng hàng.
Cho ∆𝐴𝐵𝐶 có trung tuyến 𝐴𝐷, trọng tâm 𝐺. Qua 𝐺 kẻ đường thẳng 𝑑 cắt các cạnh 𝐴𝐵, 𝐴𝐶. Gọi 𝐸 là trung điểm 𝐴𝐺. Gọi 𝐹, 𝐻, 𝐼, 𝐽, 𝐾 là hình chiếu
của 𝐵, 𝐴, 𝐸, 𝐷, 𝐶 trên đường thẳng 𝐷. Chứng minh rằng:
a) 𝐸𝐼 = 𝐷𝐽 và 𝐷𝐽 =𝐴𝐻/2
b) 𝐵𝐹 + 𝐶𝐾 = 𝐴𝐻.
Cho hình thoi 𝐴𝐵𝐶𝐷 (góc a > 90 độ). Gọi 𝐸 là hình chiếu vuông góc của 𝐴 trên 𝐵𝐶, 𝐹 là hình
chiếu vuông góc của 𝐶 trên 𝐴𝐷.
a) Tứ giác 𝐴𝐸𝐶𝐹 là hình gì? Vì sao?
b) 𝐵𝐷 cắt 𝐴𝐸 tại 𝐻, cắt 𝐶𝐹 tại 𝐾. Chứng minh rằng 𝐴𝐾 = 𝐶𝐻.
c) Gọi 𝐼 là giao điểm của 𝐴𝐾 và 𝐶𝐷, 𝐽 là giao điểm của 𝐶𝐻 và 𝐴𝐵. Chứng minh rằng 𝐸𝐼 ⊥ 𝐸𝐽
Cho tam giác 𝐴𝐵𝐶 vuông tại 𝐴, có 𝐴𝐵 = 9 𝑐𝑚; 𝐴𝐶 = 12 𝑐𝑚. Tia phân giác góc 𝐴 cắt 𝐵𝐶 tại 𝐷, từ 𝐷 kẻ 𝐷𝐸 vuông góc với 𝐴𝐶 (𝐸 ∈ 𝐴𝐶). a Tính tỉ số𝐵𝐷/CD Chứng minh: ∆𝐴𝐵𝐶 ∽ ∆𝐸𝐷𝐶.
Cho hình thang 𝐴𝐵𝐶𝐷 (𝐴𝐷//𝐵𝐶) có đáy lớn 𝐵𝐶 = 𝐴𝐵 + 𝐶𝐷.
Đường phân giác trong 𝐴̂, 𝐵̂ cắt nhau tại 𝐸; đường phân giác trong 𝐶̂, 𝐷̂ cắt nhau ở 𝐹. Đường phân giác ngoài 𝐴̂, 𝐵̂ cắt nhau ở 𝐼; đường phân giác ngoài của 𝐶̂, 𝐷̂ cắt nhau ở 𝐽. Đường thẳng 𝐴𝐸, 𝐴𝐼, 𝐶𝐽 cắt đường thẳng 𝐵𝐶 ở 𝐾, 𝑀, 𝑁. Gọi 𝐻, 𝐺 là trung điểm của 𝐴𝐵, 𝐶𝐷.
a) Chứng minh rằng ∆𝐴𝐵𝐾 cân và 𝐸 là trung điểm 𝐴𝐾.
b) Chứng minh rằng 𝐷𝐹 ⊥ 𝐶𝐹 và 𝐷, 𝐹, 𝐾 thẳng hàng.
c) Chứng minh rằng 𝐼 là trung điểm 𝐴𝑀, 𝐽 là trung điểm 𝐷𝑁.
d) Chứng minh rằng 𝐼, 𝐺, 𝐸, 𝐹, 𝐻, 𝐽 thẳng hàng.
a) Chứng minh rằng tứ giác 𝐵𝐻𝐶𝐷 là hình bình hành.
b) Biết 𝐵𝐴𝐶 ̂ = 60^𝑜, tính số đo góc 𝐵𝐻𝐶 ̂.
c) Chứng minh rằng 𝐻, 𝐸, 𝐷 thẳng hàng.
d) Chứng minh rằng 𝐴𝐻 = 2𝐹𝐸 và 𝐹𝐸 ⊥ 𝐵𝐶.
e) Chứng minh rằng 𝐴𝐻 = 2𝐼𝐽 và 𝐻, 𝐺, 𝐹 thẳng hàng
Cho ∆𝐴𝐸𝐶 vuông tại 𝐴 có 𝐴𝐸 = 5𝑐𝑚; 𝐴𝐶 = 12𝑐𝑚. Gọi 𝐵 là trung điểm của 𝐸𝐶;𝑂 là trung điểm của 𝐴𝐶; trên tia đối của tia 𝑂𝐵 lấy điểm 𝐷 sao cho 𝑂𝐵 = 𝑂𝐷.
a. Tính độ dài 𝐸𝐶; 𝐴𝐵.
b. Chứng minh tứ giác 𝐴𝐵𝐶𝐷 là hình thoi.
c. Chứng minh 𝐴𝐸 = 𝐵𝐷.
Giúp mình với
Cho hình thoi 𝐴𝐵𝐶𝐷 (𝐴መ > 90). Gọi 𝐸 là hình chiếu vuông góc của 𝐴 trên 𝐵𝐶, 𝐹 là hình
chiếu vuông góc của 𝐶 trên 𝐴𝐷.
a) Tứ giác 𝐴𝐸𝐶𝐹 là hình gì? Vì sao?
b) 𝐵𝐷 cắt 𝐴𝐸 tại 𝐻, cắt 𝐶𝐹 tại 𝐾. Chứng minh rằng 𝐴𝐾 = 𝐶𝐻.
c) Gọi 𝐼 là giao điểm của 𝐴𝐾 và 𝐶𝐷, 𝐽 là giao điểm của 𝐶𝐻 và 𝐴𝐵. Chứng minh rằng 𝐸𝐼 ⊥ 𝐸𝐽