Ta có:
\(S=3+3^2+3^3+...+3^{2007}\)
\(=\left(3+3^2+3^3\right)+...+\left(3^{2005}+3^{2006}+3^{2007}\right)\)
\(=1.\left(3+3^2+3^3\right)+...+3^{2004}.\left(3+3^2+3^3\right)\)
\(=\left(1+...+3^{2004}\right).\left(3+3^2+3^3\right)\)
\(=\left(1+...+3^{2004}\right).39=\left(1+...+3^{2004}\right).3.13\) chia hết chp 13
a) S= 3+3^2+....+3^2007
= ( 3 + 3^2 +3^3)+....+(3^2005+3^2006+2^2007)
= 3(1+3+9)+......+3^2005(1+3+9)
= 3. 13 +......+2^2005.13
=13(3+...+2^2005) chia hết cho 13
=> ĐPCM
b) S= 3+3^2+....+3^2007
= 3 + (3^2+3^3+3^4+3^5)+.....+(3^2004+3^2005+3^2006+3^2007)
= 3 + 3^2( 1+3+9+27)+.....+3^2004(1+3+9+27)
= 3+ 3^2.40 +....+3^2004.40
= 3+ 40(3^2+...+3^2004) chia cho 40 dư 3
MÌnh nghĩ câu c, k đến nỗi nào , cô lên , 2S + 3 thì cứ làm theo vd sau
A= 2+2^2+...+2^11
2A = 2^2+...+2^12
rồi làm hơ ,