( Mu4-42. Cho hàm so $f(x)$ có đạo hàm trên đoạn $[0 ; 1]$ thỏa mãn $f(1)=0$ và $\int_0^1\left[f^{\prime}(x)\right]^2 d x=\int_0^1(x+1) e^x f(x) d x=\frac{e^2-1}{4}$. Tinh tich phân $I=\int_{0}^1 f(x) d x$.
A. $I=2-e$.
B. $I=\frac{e}{2}$.
C. $l=e-2$.
D. $1=\frac{e-1}{2}$
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = t y = − 1 z = − t và 2 mặt phẳng (P),(Q) lần lượt có phương trình x + 2 y + 2 z + 3 = 0 ; x + 2 y + 2 z + 7 = 0 . Viết phương trình mặt cầu (S) có tâm I thuộc đường thẳng d, tiếp xúc với hai mặt phẳng (P) và (Q).
A. x + 3 2 + y + 1 2 + z − 3 2 = 4 9
B. x − 3 2 + y + 1 2 + z + 3 2 = 4 9
C. x + 3 2 + y + 1 2 + z + 3 2 = 4 9
D. x − 3 2 + y − 1 2 + z + 3 2 = 4 9
Kí hiệu S(t) là diện tích của hình phẳng giới hạn bởi các đường y=2x+1,y=0,x=1,x=t, (t>1). Tìm t để S(t) = 10
Kí hiệu S(t) là diện tích của hình phẳng giới hạn bởi các đường y = 2x + 1; y = 0; x = 1; x = t Tìm t để S(t) = 10
A. t = 4
B. t = 13
C. t = 3
D. t = 14
Viết phương trình mặt cầu (S) có tâm I thuộc đường thẳng ∆ : x = t y = - 1 z = - t và (S) tiếp xúc với hai mặt phẳng ( P ) : x + 2 y + 2 z + 3 = 0 v à ( Q ) : x + 2 y + 2 z + 7 = 0 .
A. x - 3 2 + y + 1 2 + z + 3 2 = 4 9
B. x + 3 2 + y + 1 2 + z - 3 2 = 4 9
C. x + 3 2 + y - 1 2 + z - 3 2 = 4 9
D. x - 3 2 + y - 1 2 + z + 3 2 = 4 9
Trong không gian Oxyz, cho mặt cầu (S): ( x - 1 ) 2 + y 2 + ( z + 2 ) 2 = 4 và đường thẳng d : x = 2 - t y = t z = m - 1 + t Tổng các giá trị thực của m để d cắt (S) tại hai điểm phân biệt A, B và A B = 2 2 bằng
A. -5
B. 3
C. -3
D. -4
Trong không gian Oxyz, cho mặt cầu ( S ) : ( x - 1 ) 2 + y 2 + ( z + 2 ) 2 = 4 và đường thẳng d : x = 2 - t y = t z = m - 1 - t Tổng các giá trị thực của tham số m để d cắt (S) tại hai điểm phân biệt A,B và các tiếp diện của (S) tại A,B tạo với nhau một góc lớn nhất bằng
A. -1,5
B. 3
C. -1
D. -2,25
Cho mặt phẳng P : x + y - z + 2 = 0 ; Q : x + 1 = 0 . Gọi ∆ = P ∩ Q . Xét d : x = - 1 y = t z = 1 + t t ∈ ℝ . Chọn khẳng định đúng
Trong không gian Oxyz, cho mặt cầu (S): ( x + 1 ) 2 + ( y - 1 ) 2 + ( z - 2 ) 2 = 9 và mặt phẳng (P): 2x-2y+z+14=0. Gọi M ( a ; b ; c ) là điểm thuộc mặt cầu (S) sao cho khoảng cách từ M đến mặt phẳng (P) lớn nhất. Tính T = a + b + c .
Trong không gian Oxyz, cho đường thẳng d : x + 2 4 = y - 1 - 4 = z + 2 3 và mặt phẳng (P): 2x-y+2z+1=0. Đường thẳng ∆ đi qua E(-2;1;-2) song song với (P) đồng thời tạo với d góc bé nhất. Biết rằng ∆ có một vector chỉ phương u → = ( m ; n ; 1 ) . Tính T = m 2 - n 2
A. T = -5
B. T = 4
C. T = 3
D. T = -4