\(\frac{x}{y+z+1}\)= \(\frac{y}{x+z+1}\)= \(\frac{z}{x+y-2}\)= \(\frac{x+y+z}{y+z+1+x+z+1+x+y-1}\)
= \(\frac{x+y+z}{2x+2y+2z}\)= \(\frac{x+y+z}{2\left(x+y+z\right)}\)= \(\frac{1}{2}\)
=> \(\frac{z}{x+y-2}\)= \(\frac{1}{2}\)= \(\frac{z+1}{x+y-2+2}\)= \(\frac{z+1}{x+y}\)
=> \(\frac{z+1}{x+y}\)= \(\frac{1}{2}\)=> \(\frac{x+y}{z+1}\)= 2