Ta có:
\(\frac{abc}{a+bc}\)=\(\frac{bca}{b+ca}\)
<=>\(\frac{abc}{bca}=\frac{a+bc}{b+ca}\)
=>\(\frac{a+bc}{b+ca}\)=>\(\frac{a}{b}=\frac{bc}{ca}\)(tính chất dãy tỉ số bằng nhau)<=>\(\frac{a}{bc}=\frac{b}{ca}\)(đpcm)
Ta có:
\(\frac{abc}{a+bc}\)=\(\frac{bca}{b+ca}\)
<=>\(\frac{abc}{bca}=\frac{a+bc}{b+ca}\)
=>\(\frac{a+bc}{b+ca}\)=>\(\frac{a}{b}=\frac{bc}{ca}\)(tính chất dãy tỉ số bằng nhau)<=>\(\frac{a}{bc}=\frac{b}{ca}\)(đpcm)
Cho tỉ lệ thức \(\overline{\frac{abc}{a+bc}}\)=\(\overline{\frac{bca}{b+ca}}\), chứng minh tỉ lệ thức \(\frac{a}{bc}\)=\(\frac{b}{ca}\)
cho tỉ lệ thức \(\frac{\overline{abc}}{a+\overline{bc}}\)=\(\frac{\overline{bca}}{b+\overline{ca}}\)CM tỉ lệ thức \(\frac{a}{\overline{bc}}=\frac{b}{\overline{ca}}\)
Cho \(\frac{a+\overline{bc}}{\overline{abc}}=\frac{b+\overline{ca}}{\overline{bca}}=\frac{c+\overline{ab}}{\overline{cab}}\)
Chứng minh \(\frac{\overline{bc}}{a}=\frac{\overline{ca}}{b}\frac{\overline{ab}}{c}\)
1 . Cho \(\frac{a+bc}{abc}\)= \(\frac{b+ca}{bca}\)=\(\frac{c+ab}{cab}\). Chứng minh \(\frac{bc}{a}=\frac{ca}{b}=\frac{ab}{c}\)( ab , bc , ca , abc , bca , cab )
Cho dãy tỉ số \(\frac{ab+bc}{a+b}=\frac{bc+ca}{b+c}=\frac{ca+ab}{c+a}\) (ab,bc,ca có gạhj ngang trên đầu). Chứng minh rằng a=b=c
Tìm giá trị của k biết rằng:
a) k=\(\frac{\overline{ab}}{\overline{abc}}=\frac{\overline{bc}}{\overline{bca}}=\frac{\overline{ca}}{\overline{cab}}\)
b) k= \(\frac{\overline{abc}}{\overline{ab}+c}=\frac{\overline{bca}}{\overline{bc}+a}=\frac{\overline{cab}}{\overline{ca}+b}\)
Cho \(\frac{a+bc}{abc}\)=\(\frac{b+bc}{bca}\)=\(\frac{c+ab}{cab}\)chứng minh \(\frac{bc}{a}\)=\(\frac{ca}{b}\)=\(\frac{ab}{c}\) mình đang cần gấp
tính k biết k=\(\frac{abc}{ab+c}+\frac{bca}{bc+a}+\frac{cab}{ca+b}\) (abc; bca; cab; ab; bc; ca là các số )
Cho tỉ lệ thức \(\dfrac{\overline{abc}}{a+\overline{bc}}=\dfrac{\overline{bca}}{b+\overline{ca}}\). CMR tỉ lệ thức \(\dfrac{a}{\overline{bc}}=\dfrac{b}{\overline{ca}}\)