Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-\left(a-b+c\right)}{a+b-c-\left(a-b-c\right)}=\frac{2b}{2b}=1\)
=> a + b + c = a + b - c
=> c = -c
=> 2c = 0
=> c = 0( đpcm)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-\left(a-b+c\right)}{a+b-c-\left(a-b-c\right)}=\frac{2b}{2b}=1\)
=> a + b + c = a + b - c
=> c = -c
=> 2c = 0
=> c = 0( đpcm)
Cho tỉ lệ thức : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\) trong đó \(b\ne0\) . Chứng minh rằng c =0
Cho tỉ lệ thức:
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\)
Trong đó \(b\ne0.\)Chứng minh rằng c=0
Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=a-b+ca-b-c\) trong đó b \(\ne0\) , . Chứng minh rằng c =0
Chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\left(a-b\ne0,c-d\ne0\right)\) ta có thể suy ra tỉ lệ thức \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\).
Chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\left(a-b\ne0,c-d\ne0\right)\)ta có thể suy ra tỉ lệ thức \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\left(a-b\ne0,c-d\ne0\right)\)ta có thể suy ra tỉ lệ thức \(\frac{a+b}{a-b}=\frac{c+d}{c-d}.\)
Cho tỉ lệ thức: \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\)trong đó b # 0. Chứng minh rằng c = 0
chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\left(a-b\ne0,c-d\ne0\right)\)
ta có thể suy ra tỉ lệ thức \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Cho tỉ lệ thức:\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\left(b\ne0\right)\)
Chứng minh rằng:c=0