Ta có: \(\frac{a-b}{a+b}=\frac{a+b-2b}{a+b}=1-\frac{2b}{a+b}.\) tương tự : \(\frac{b-c}{b+c}=1-\frac{2c}{b+c}\)
do \(\frac{a-b}{a+b}=\frac{b-c}{b+c}\Rightarrow1-\frac{2b}{a+b}=1-\frac{2c}{b+c}\)
=> \(\frac{b}{a+b}=\frac{c}{b+c}\Rightarrow b.\left(b+c\right)=c.\left(a+b\right).\)
=> \(b^2+bc=ac+bc\Rightarrow b^2=ac\)( đpcm )