Cho ti le thức a/b=c/d.Hãy chứng minh ab/cd= (a^2 - b^2) / (c^2 - d^2)
chứng minh cách đặt K nha ?
cho ti le thuc\(\frac{a}{b}=\frac{c}{d}\) cmR
\(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)va \(\left(\frac{a+b}{c+d}\right)^2\)=\(\frac{a^2-b^2}{c^2-d^2}\)
cho ti lệ thuc \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)chứng minh rằng \(\frac{a}{b}=\frac{c}{d}\)
Cho tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\). Chứng minh các tỉ lệ thức sau:
\(\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\)và \(\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(c+d\right)^2}{c^2+d^2}\)
Cho tỉ lệ thức\(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh rằng \(\frac{ab}{cd}=\frac{a^2+c^2}{b^2+d^2}\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\).Chứng minh rằng \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)và \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\).Chứng minh rằng ta có các tỉ lệ thức sau( giả thiết các tỉ lệ thức đều có nghĩa)
a,\(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
b,\(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
Cho tỉ lệ thức \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\) với a,b,c,d khác 0 và c khác-d
Chứng minh rằng : \(\frac{a}{b}=\frac{c}{d}\)hoặc \(\frac{a}{b}=\frac{d}{c}\)