Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
\(\left(\frac{a+b}{c+d}\right)^3=\left(\frac{bk+b}{dk+d}\right)^3=\left(\frac{b\left(k+1\right)}{d\left(k+1\right)}\right)^3=\left(\frac{b}{d}\right)^3\left(1\right)\)
\(\frac{a^3+b^3}{c^3+d^3}=\frac{\left(bk\right)^3+b^3}{\left(dk\right)^3+d^3}=\frac{b^3k^3+b^3}{d^3k^3+d^3}=\frac{b^3\left(k^3+1\right)}{d^3\left(k^3+1\right)}=\frac{b^3}{d^3}=\left(\frac{b}{d}\right)^3\left(2\right)\)
Từ (1) & (2)=>\(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3+b^3}{c^3+d^3}\)