Ta có : a+b/b+c = c+d/d+a
=> (a+b)/(c+d)= (b+c)/(d+a)
=> (a+b)/(c+d)+1=(b+c)/(d+a)+1
hay: (a+b+c+d)/(c+d)=(b+c+d+a)/(d+a)
- Nếu a+b+c+d khác 0 thì : c+d=d+a => c=a (1)
- Nếu a+b+c+d = 0 (2)
Từ (1) và (2)
\(\RightarrowĐPCM\)
Ta có : \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)
\(\Rightarrow\)\(\frac{a+b}{c+d}=\frac{b+c}{d+a}\)
\(\Rightarrow\)\(\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1\)
Hoặc \(\frac{a+b+c+d}{c+d}=\frac{b+c+d+a}{d+a}\)
Nếu a + b + c + d khác 0 thì c + d = d + a => c = a ( hoặc a = c )
Nếu a + b + c + d = 0 ( đpcm )
Ta có:\(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)
\(\implies\)\(\frac{a+b}{c+d}=\frac{b+c}{d+a}\)
\(\implies\) \(\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1\)
\(\implies\) \(\frac{a+b+c+d}{c+d}=\frac{a+b+c+d}{d+a}\)
\(\implies\) \(\frac{a+b+c+d}{c+d}-\frac{a+b+c+d}{d+a}=0\)
\(\implies\) \(\left(a+b+c+d\right)\left(\frac{1}{c+d}-\frac{1}{d+a}\right)=0\)
\(\implies\)\(\orbr{\begin{cases}a+b+c+d=0\\\frac{1}{c+d}-\frac{1}{d+a}=0\end{cases}}\)
\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\\frac{1}{c+d}=\frac{1}{d+a}\end{cases}}\)
\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\c+d=d+a\end{cases}}\)
\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\c=a\end{cases}}\)