Cho tỉ lệ thức 3a+2b+c/a+2b-c=3a+2b+c/a-2b-c (b≠0)chứng minh a+c =0
cho 3a+2b+c/a+2b-c=3a-2b+c/a-2b-c và b ko =0 CMR a=c=0 hộ mik nha!
Cho a,b,c>0 và dãy tỉ số\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)
Tính P = \(\dfrac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
cho a/b=c/d chứng minh tỉ lệ thức bằng nhau
a, ( b+d ) c = ( a+c ) d
b, ( 2x - c ) ( 2b + d) = ( 2b - d ) ( 2a + c )
c , ( 3a + 5 c ) ( b - 3d ) = ( 3b + 5d ) ( a - 3c)
mn giúp mình với ạ ! mình đang cần gấp
Từ tỉ lệ thức \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\), với a , b , c , d ≠ 0 có thể suy ra:
A. \(\dfrac{3a}{2c}\)=\(\dfrac{2d}{3b}\)
B. \(\dfrac{3b}{a}\)=\(\dfrac{3d}{c}\)
C. \(\dfrac{5a}{5d}\)=\(\dfrac{b}{c}\)
D. \(\dfrac{a}{2b}\)=\(\dfrac{d}{2c}\)
Cho tỉ lệ thức:\(\frac{a}{b}\)=\(\frac{c}{d}\)Chứng minh rằng:\(\frac{3a-2b}{3a+2b}\)=\(\frac{3c-2d}{3c+2d}\)(Giả sử các tỉ lệ thức đều có nghĩa)
Bài 1: Cho \(\dfrac{3a+b+2c}{2a+c}=\dfrac{a+3b+c}{2b}=\dfrac{a+2b+2c}{b+c}\). Tính giá trị biểu thức A=\(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Bài 2: Cho x; y; z ≠ 0 và \(\dfrac{x+3y-z}{z}=\dfrac{y+3x-x}{x}=\dfrac{z+3x-y}{y}\). Tính P=\(\left(\dfrac{x}{y}+3\right)\left(\dfrac{y}{z}+3\right)\left(\dfrac{z}{x}+3\right)\)
Cứu tui với :<
Bài 1: Cho \(\dfrac{3a+b+2c}{2a+c}=\dfrac{a+3b+c}{2b}=\dfrac{a+2b+2c}{b+c}\). Tính giá trị biểu thức A=\(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Bài 2: Cho x; y; z ≠ 0 và \(\dfrac{x+3y-z}{z}=\dfrac{y+3x-x}{x}=\dfrac{z+3x-y}{y}\). Tính P=\(\left(\dfrac{x}{y}+3\right)\left(\dfrac{y}{z}+3\right)\left(\dfrac{z}{x}+3\right)\)
Bài 1: Cho \(\dfrac{3a+b+2c}{2a+c}=\dfrac{a+3b+c}{2b}=\dfrac{a+2b+2c}{b+c}\). Tính giá trị biểu thức A=\(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Bài 2: Cho x; y; z ≠ 0 và \(\dfrac{x+3y-z}{z}=\dfrac{y+3x-x}{x}=\dfrac{z+3x-y}{y}\). Tính P=\(\left(\dfrac{x}{y}+3\right)\left(\dfrac{y}{z}+3\right)\left(\dfrac{z}{x}+3\right)\)