Bài 3. Cho tam giác ABC có 3 góc nhọn, kẻ AH vuông góc với BC tại H. Trên tia đối của tia AC lấy D sao cho AD AC. Kẻ DE vuông góc với AH tại E. Chứng minh A là trung điểm của EH.
1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.
2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?
3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.
5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM
Cho tam giác ABC vuông tại A có AB<AC. Trên tia đối của tia AC lấy điểm D sao cho AD=AB. Trên tia đối của tia AB lấy điểm E sao cho AE=AC
a. So sánh các góc của tam giác ABC. Chứng minh BD<BC
b. Chứng minh BC=DE, tam giác ABC vuông cân và BC//CE
c. Kẻ đường cao AH của tam giác ABC, đường cao AH cắt DE tại M. Từ A kẻ đường vuông góc với CM tại K. đường thẳng này cắt BC tại N. Chứng minh rằng MN//AB
\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b) ABC = KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có B = C , kẻ AH BC, H BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK AD, CI AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)
C1:Cho tam giác ABC.Kẻ AH vuông góc với BC .Trên tia đối của tia AH lấy D sao cho AH=AD.Gọi E là trung điểm của HC , F là gia điểm của AC và DE.Chứng minh: a, AF=1/3 AC b, H,F và trung điểm của M của DC thẳng hàng ; c, HF=1/3 CD. |
Cho tam giác ABC vuông tại A,vẽ đường cao AH, trên đó lấy điểm D. Trên tia đối của tia HA lấy 1 điểm E sao cho HE = AD. Đường thẳng vuông góc với AH tại điểm D cắt AC tại F. Chứng minh rằng EB vuông góc với EF
Cho tam giác ABC vuông tại A,vẽ đường cao AH, trên đó lấy điểm D. Trên tia đối của tia HA lấy 1 điểm E sao cho HE = AD. Đường thẳng vuông góc với AH tại điểm D cắt AC tại F. Chứng minh rằng EB vuông góc với EF
Cho tam giác ABC, đường cao AH. Trên tia đối của tia AC lấy D sao cho AD=AB. Trên tia đối của tia AB lấy E sao cho AE=AC. Gọi I là giao điểm của AH và DE. Chứng minh rằng I là trung điểm của DE
Cho tam giác ABC vuông tại A (AB < AC). Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC.
1) Chứng minh rằng : BC = DE.
2) Chứng minh rằng : Tam giác ABD vuông cân và BD // CE.
3) Vẽ đường cao AH của tam giác ABC, tia AH cắt cạnh DE tại M. Từ A vẽ đường vuông góc với CM tại K, đường thẳng này cắt BC tại N.
Chứng minh rằng : MN // AB và AM = 1/2 DE.