a)
xét 2 tam giác vuông ABMM và tam giác NBM có:
BM(chung)
ABM=NBM(gt)
=> tam giác ABM=NBM(CH-GN)
b)
theo câu a, ta có: tam giác ABM=NBM(CH-GN)
=>AB=BN=> tam giác ABN cân tại B có BM là tia phân giác
=> BM là đường cao, là đường trung tuyến của tam giác ABN
=> BM là đường trung trực của AN
c)
theo câu a, ta có tam giác ABM=NBM(CH-GN)
suy ra MA=MC
xét tam giác AIM=NCM có:
MA=MC(cmt)
IAM=MNC=90
AMI=NMC(2 góc đối đỉnh)
=> tam giác AIM=NCM(g.c.g)
=>MI=MC
d)
ta có tam giác MNC có N=90
=> MC là cạnh lớn nhất trong tam giác MNC
=>MC>MN
ta có: MA=MN
=>MA<MC