Bài 4: Cho hình thang ABCD (AB // CD, AB < CD). Từ A kẻ AH vuông góc với CD. Lấy E, F lần lượt là trung điểm của AD và BC. EF cắt AH tại D
a. Tứ giác ABCH là hình gì?
b, chứng minh EF//CD
c) gọi I là giao điểm của AH và EF, chứng minh I là trung điểm của AH
giúp mình với
Cho tam giác ABC có AB= 12cm, AC=18cm.Gọi H là chân đường vuông góc kẻ từ B đến phân giác góc  (phân giác  cắt AC tại E).Gọi M là trung điểm của BC. Tính độ dài HM.(vẽ hình giùm mình lun nha)
Cho tam giác ABC có góc A=90 độ. Gọi M là điểm thuộc cạnh huyền BC. Gọi D,E thứ tự là chân các đường vuông góc kẻ từ M đến AB,AC a)So sánh độ dài Am và DE.b) Gọi I là trung điểm của DE. Hỏi khi M di chuyển trên BC thì I di chuyển trên đường nào? c) Tìm vị trị của M trên BC để độ đài DE nhỏ nhất
1.Cho hình thang ABCD ( AB//CD ) gọi M,I,N lần lượt là trung điểm AD,AC,BC . chứng minh M,I,N thẳng hàng .
2.Cho tam giác ABC gọi M là trung điểm BC , I là trung điểm AM . Từ BI cắt AC ở D . Qua M kẻ đường thẳng song song BD cắt A ở E :
chứng minh AD=DE=EC
chứng minh ID=1/4
3.cho tam giác ABC có AB>AC , lấy E thuộc AB sao cho BE=AC . Gọi I,D,F thứ tự là trung điểm CE,AE,BC :
Chứng minh : a) tam giác IDF cân
b)Góc BAC = 2 lần góc IDF
Cho tam giác ABC có AC= 8cm; AB= 6cm. Gọi H là chân đường vuông góc kẻ từ B đến tia phân giác của góc A , M là trung điểm của BC. Tính độ dài đoạn thẳng HM
Hình thang vuông ABCD ( A = D = 90˚ ) có I là trung điểm của AD và CI là tia phân giác của góc C. Gọi H là chân đường vuông góc kẻ từ I đến BC. CMR :
a) AHD = 90˚
b) BIC = 90˚
c) AB + CD = BC
Vẽ ra phía ngoài góc nhọn ABC các tam giác đều ABD và ACE. gọi M,N lần lượt là trung điểm của AD và CE. H là hình chiếu của N trên AC, từ H kẻ đường thẳng song song với AB cắt BC tại I
a) CM: tam giác AMN đồng dạng với tam giác HIN
b) tính các góc của tam giác MNI
c) giả sử góc BAC = 90°, AB = a, AC = b. Tính diện tích tam giác MNI theo a,b
Cho tam giác ABC nhọn ( AB<AC ) . Kẻ đường cao AH . Gọi M là trung điểm Ab , N đối xứng H qua M .
a) Chứng minh : ANBH là hình chữ nhật .
b) Trên tia đối tia HB lấy E sao cho H là trung điểm BE , Gọi F là điểm đối xứng A qua H . Chứng minh : ABFE là hình thoi .
c) Gọi I là giao điểm AH và NE . Chứng minh : MI // BC .
d ) Đường thẳng MI cắt AC tại K . Kẻ NQ vuông góc với KH tại Q . Chứng minh : AQ vuông góc BQ .
b1: cho tam giác nhọn ABC. Gọi D,E,F lần lượt là trung điểm của AC,AB,BC
a) tứ giác BCDE là hình gì? vì sao?
b) tứ giác BEDF là hình gì? vì sao?
c) gọi H là trực tâm của tam giác ABC. M,N,P lần lượt là trung điểm của BH,CH,AH. cmr: tứ giác DEMN là hình chữ nhật
d) gọi O là giao điểm của MD và EN. cmr 3 điểm O,P,F thẳng hàng
b2: cho tam giác ABC cân tại A. đường trung tuyến AI. E là trung điểm của AC, M là điểm đối xứng với I qua E.
a) cmr tứ giác AMCI là hình chữ nhật
b) AI cắt BM tại O. cmr OE // IC
b3: cho tam giác ABC vuông tại A, có góc B bằng 60 độ, AB = 3cm, AM là trung tuyến của tam giác.
a) Tính độ dài cạnh BC và số đo góc MAC
b) trung trực của cạnh BC cắt AB tại E và cắt AC tại F. chứng minh B với E đối xứng qua AC và FC = 2FA
c) gọi I là trung điểm của đoạn FC. K là trung điểm của đoạn FE. chứng minh tứ giác AMIK là hình chữ nhật và tính diện tích hình chữ nhật AMIK.
d) P là trung điểm của FI, Q là trung điểm của FK. cmr 3 đường thẳng AQ,BF,MP đồng quy