Cho tập hợp X gồm các số tự nhiên có sáu chữ số đôi một khác nhau có dạng a c d e f ¯ . Từ tập hợp X lấy ngẫu nhiên một số. Xác xuất để số lấy ra là số lẻ và thỏa mãn a<b<c<d<e<f là
A. 33 68040
B. 1 2430
C. 31 68040
D. 29 68040
Cho E là tập các số tự nhiên có 6 chữ số đôi một khác nhau lập được từ các số 0; 1; 2; 3; 4; 5; 6. Tính xác suất để chọn ngẫu nhiên từ E được một số có dạng a b c d e f ¯ sao cho a + b + c + d = e + f
A . 1 90
B . 4 135
C . 8 225
D . 5 138
Gọi X là tập hợp các số tự nhiên có 6 chữ số đôi một khác nhau. Lấy ngẫu nhiên một số thuộc tập X. Xác suất để số lấy được luôn chứa đúng ba số thuộc tập Y = {1;2;3;4;5} và 3 số đứng cạnh nhau, số chẵn đứng giữa hai số lẻ.
A . 37 63
B . 25 189
C . 25 378
D . 17 945
Gọi A là tập các số tự nhiên gồm 5 chữ số mà các chữ số đều khác 0. Lấy ngẫu nhiên từ tập A một số. Tính xác suất để lấy được số mà chỉ có đúng 3 chữ số khác nhau.
A . 1400 19683
B . 560 6561
C . 1400 6561
D . 2240 6561
Từ tập hợp tất cả các số tự nhiên có năm chữ số mà các chữ số đều khác 0, lấy ngẫu nhiên một số. Xác suất để trong số tự nhiên được lấy ra chỉ có mặt ba chữ số khác nhau là:
A . 504 59049
B . 7560 59049
C . 1260 59049
D . 12600 59049
Gọi A là tập các số tự nhiên có 3 chữ số đôi một khác nhau. Lấy ngẫu nhiên từ A ra hai số. Tính xác suất để lấy được hai số mà các chữ số có mặt ở hai số đó giống nhau.
A. 41 5823
B. 35 5823
C. 41 7190
D. 14 1941
Gọi A là tập các số tự nhiên có 3 chữ số đôi một khác nhau. Lấy ngẫu nhiên ra từ A hai số. Tính xác suất để lấy được hai số mà các chữ số có mặt ở hai số đó giống nhau.
A . 41 5823
B . 35 5823
C . 41 7190
D . 14 1941
Gọi E là tập hợp các chữ số có hai chữ số khác nhau được lập từ tập hợp A={0;1;2;3;4;5;6}. Lấy ngẫu nhiên đồng thời hai phân tử trong E. Tính xác suất biến cố M = “lấy được ít nhất một số chia hết cho 10”.
A.
B.
C.
D.
Gọi E là tập hợp các số tự nhiên gồm 3 chữ số phân biệt từ các chữ số 1, 2, 3, 4, 5. Chọn ngẫu nhiên 2 số khác nhau từ tập hợp E. Tính xác suất để 2 số được chọn có đúng 1 số có chữ số 5.
A. 7 22
B. 5 63
C. 144 295
D. 132 271