trên đường kính AB của đường tròn tâm O Lấy hai điểm B và đường thẳng d và điểm O là điểm M và N sao cho AM < MB .các đg thẳng MT,MO,MS cắt đg tròn tâm o lần lượt tại C ,E,D.đường thẳng CD cắt đg thẳng AB tại F.qua D kẻ đg thẳng // với AB cắt ME tại K ,cắt MC tại N.kẻ OH vg góc CD cmr: a)KN=KD b)tứ giác HkDE nội tiếp
giúp mình với ạ huhu
Cho hai đường tròn (O) và (O') có cùng bán kính R cắt nhau tại 2 điểm A, B sao cho tâm O nằm trên đường tròn (O') và tâm O' nằm trên đường tròn tâm O. Đường nối tâm OO' cắt AB tại H, cắt đường tròn (O') tại giao điểm thứ 2 là C. Gọi F là điểm đối xứng của B qua O'.
a, CMR AC là tiếp tuyến của (O) và AC vuông góc với BF
b, Trên cạnh AC lấy điểm D sao cho AD = AF. Qua D kẻ đường thẳng vuông góc với OC và cắt OC tại K, cắt AF tại G. Gọi E là giao điểm của AC và BF. CM tứ giác AHO'E, ADKO nội tiếp
c, Tứ giác AHKG là hình gì? Vì sao?
d, Tính diện tích phần chung của hình (O) và (O') the bán kính R
Cho điểm A nằm ngoài đường tròn tâm O bán kính R từ A kẻ đường thẳng d không đi qua tâm O cắt O tại B và C ( B nằm giữa A và C ) các tiếp tuyến với đường tròn O tại B và C cắt nhau tại D từ D kẻ DH vuông góc với AO ( H nằm trên AO ) DH cắt cung nhỏ BC tại M gọi I là giao điểm của DO và BC a. Chứng minh OHDC là tứ giác nội tiếp b. Chứng minhOH×OA= OI×OD
Cho 2 đường tròn tâm O và tâm O' cắt nhau tại A và B. 2 tâm đường tròn nằm trên 2 mặt phẳng bờ AB Qua B kẻ cát tuyến vuông góc với AB cắt đường tròn tâm O ở C và cắt đường tròn tâm O' ở D. Tia Ca cắt đường tròn tâm O' ở I. Tia DA cắt đường tròn tâm O tại K.
Chứng minh tứ giác CKID là tứ giác nội tiếp
Gọi M là giao điểm của CK và DI. chứng minh M, A, B thẳng hàng
Cho tam giác ABC vuông tại A, vẽ đường tròn tâm O đường kính AC. Qua C kẻ tiếp tuyến d với đường tròn tâm O. Kẻ OD vuông góc với BC (D thuộc BC ), đường thẳng OD cắt đường thẳng d tại E và cắt đường thẳng AB tại F. Gọi I là giao điểm của AE và BO
1) Chứng minh AE vuông góc với BO
2) Chứng minh AI.AE =2OD.OF
Cho đường tròn tâm O và đường thẳng d cắt đường tròn tâm O tại hai điểm B và C (d không đi qua O). Trên tia đối của tia BC lấy điểm A (A nằm ngoài đường tròn tâm O). Kẻ AM và AN là các tiếp tuyến với đường tròn tâm O tại M và N. Gọi I là trung điểm của BC, AO cắt MN tại H, và cắt đường tròn tại các điểm P và Q (P nằm giữa A và O), BC cắt MN tại K.
a) Chứng minh 4 điểm O, M, N, I nằm trên cùng một đường tròn và AK. AI=AM2
b) Gọi D là trung điểm HQ, từ H kẻ đường thẳng vuông góc với MD, cắt đường thẳng MP tại E. Chứng minh P là trung điểm của ME.
GIÚP MK VỚI QAQ
cho đường tròn tâm o cắt đường tròn tâm O' tại A và B. Từ đường thẳng AB lấy điểm M kẻ TM là tiếp tuyến của đường tròn tâm O và từ M kẻ cát tuyến cắt đường tròn tâm O' tại C và D. Chứng minh: MT^2=MC.MD
1, Cho tam giác ABC nội tiếp (O) đường kính AD. Qua D kẻ tiếp tuyến với đường tròn cắt BC kéo dài tại P. Đường thẳng PO cắt AB, AC ở N, M. Chứng minh rằng OM = ON.
2, Cho tam giác ABC trực tâm H. Gọi A',B',C' là trung điểm của BC, CA, AB. Vẽ 3 đường tròn bằng nhau có tâm A, B, C. (A) cắt B'C' tại D và D'; (B) cắt A'C' tại E và E'. (C) cắt A'B' ở K và K'. CMR: 6 điểm D,D',E,E',K,K' thuộc 1 đường tròn.
3, Cho tam giác ABC nội tiếp (O). Phân giác góc A cắt (O) tại M, vẽ đường kính MN. Phân giác góc B, góc C cắt AN tại P, Q. CMR tứ giác PCBQ nội tiếp
Cho hai đường tròn tâm O bán bán kính R và tâm O' bán kính R' cắt nhau tại A và B. Từ điểm C trên tia đối của tia AB kẻ các tiếp tuyến CD, CE với đường tròn tâm O (D, E là các tiếp điểm và E nằm trong đường tròn tâm O'). AD và AE cắt đường trong tâm O' lần nữa lần lượt tại M và N. DE cắt MN tại I.
a) Chứng minh tứ giác MIBD nội tiếp.
b) Chứng minh I là trung điểm của MN.