Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kiệt Nguyễn

Cho tam gica ABC cân (AB=AC) có góc BAC=100 độ. Qua B dựng tia BX tạo với BC một góc bằng 30 độ, trong đó tia Bx nằm giữa BA và BC. Dựng tia phân giác của góc ACB cắt Bx tại I. 

a, CM: tam giác CAI cân

b, tính số đo góc BAI

Nguyễn Linh Chi
10 tháng 9 2019 lúc 21:56

A B C I K

+) \(\Delta\)ABC cân => \(\hept{\begin{cases}AB=AC\left(1\right)\\\widehat{ABC}=\widehat{ACB}\end{cases}}\)

Ta có:  \(\widehat{BAC}=100^o\)=> \(\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{BAC}}{2}=40^o\)

\(\widehat{IBC}=\widehat{ABC}-\widehat{ABI}=40^o-10^o=30^o\)

\(\widehat{ACI}=\widehat{BCI}=\frac{\widehat{ACB}}{2}=\frac{40^o}{2}=20^o\)(i)

+) Trên nửa mặt phẳng bờ AC  chứa B lấy điểm K sao cho \(\Delta\)AKC đều => \(\hept{\begin{cases}\widehat{KAC}=\widehat{ACK}=\widehat{AKC}=60^o\\AK=KC=AC\left(2\right)\end{cases}}\)

=> \(\widehat{BAK}=\widehat{BAC}-\widehat{KAC}=100^o-60^o=40^o\)

Từ (1); (2) => AB=AK => \(\Delta\)ABK cân tại A => \(\widehat{ABK}=\widehat{AKB}=\frac{180^o-\widehat{BAK}}{2}=70^o\)

=> \(\widehat{KBC}=\widehat{ABK}-\widehat{ABC}=70^o-40^o=30^o\)

\(\widehat{KCB}=\widehat{KCA}-\widehat{ACB}=60^o-40^o=20^o\)

+) Xét \(\Delta\)BIC và \(\Delta\)BKC có:

\(\widehat{IBC}=\widehat{KBC}\left(=30^o\right)\)

BC chung

\(\widehat{ICB}=\widehat{KCB}\left(=20^o\right)\)

=>  \(\Delta\)BIC = \(\Delta\)BKC 

=> CK =CI (3)

(2); (3) => CI =CA =>  \(\Delta\)ACI cân tại C

b)   \(\Delta\)ACI cân tại C có: \(\widehat{ACI}=20^o\) (theo (i) )

=> \(\widehat{CIA}=\widehat{CAI}=\frac{180^o-\widehat{ACI}}{2}=80^o\)

=> \(\widehat{BAI}=\widehat{BAC}-\widehat{CAI}=100^o-80^o=20^o\)


Các câu hỏi tương tự
ĐÀO YẾN LINH
Xem chi tiết
Nguyễn Trần Khánh Vân
Xem chi tiết
Fairy Tail
Xem chi tiết
Nguyen tien dat
Xem chi tiết
Xem chi tiết
Dinh Thuy Tien
Xem chi tiết
Nguyễn Thị Thanh Hà
Xem chi tiết
Hải Yến Vũ
Xem chi tiết
nguyễn hoàng quân
Xem chi tiết