Tham khảo, bạn nhớ đổi tên góc A và B nhé
Tham khảo, bạn nhớ đổi tên góc A và B nhé
Cho tam giác ABC có AB = AC = 5cm, BC = 6cm.
a) Xác định tâm và tính bán kính đường tròn ngoại tiếp tam giác ABC.
b) Vẽ đường kính BD. Tính AD và CD (Gợi ý: Áp dụng định lý để có các tam giác vuông )
Cho 4ABC có AB = AC = 5cm, BC = 6cm.
a) Xác định tâm và tính bán kính đường tròn ngoại tiếp 4ABC.
b) Vẽ đường kính BD. Tính AD và CD (Gợi ý: Áp dụng định lý để có các tam giác vuông )
Cho tam giác ABC có AB = 3, AC = 4, BC = 5.
a∗) Xác định tâm O và bán kính của đường tròn ngoại tiếp tam giác ABC.
b) Gọi D là điểm đối xứng của A qua BC. Chứng minh D thuộc (O) và tính diện tích tam giác BCD.
Cho tam giác ABC có AB = 3, AC = 4, BC = 5.
a) Xác định tâm O và bán kính của đường tròn ngoại tiếp tam giác ABC.
b) Gọi D là điểm đối xứng của A qua BC. Chứng minh D thuộc (O) và tính diện tích tam giác BCD.
Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm. Xác định tâm đường tròn ngoại tiếp tam giác ABC và tính bán kính đường tròn đó
cho △ABC có AB=AC = 5cm , BC=6cm
a, tính bán kính của đường tròn ngoại tiếp tam giác ABC
b, vẽ đường kính BD. tính AD,CD
c, c/m góc ADB= góc ABC
Bài 1:
a/ Cho hình vuông ABCD có cạnh 5cm. Chứng minh rằng: A, B, C, D cùng nằm trên một đường tròn, tính bán kính.
b/ Cho hình chữ nhật ABDE có AB = 8, BD = 6. Chứng minh rằng: A, B, D, E cùng nằm trên một đường tròn, tính bán kính.
Bài 2: Cho tam giác ABC, vẽ đường tròn tâm O đường kính BC. (O) cắt AB, AC lần lượt tại D và E, BE giao CD tại K.
a/ CMR: CD ^ AB, BE ^ AC.
b/ CMR: AK ^ BC.
Bài 3: Cho tam giác ABC vuông ở B, AB = 8cm, BC = 6cm. Gọi D là điểm đối xứng của điểm B qua AC.
a. CMR: 4 điểm A, B, C, D cùng thuộc một đường tròn. Tính bán kính của đường tròn đó.
b. Vẽ đường kính BE của đường tròn ngoại tiếp tam giác ABC. Chứng minh tứ giác ACDE là hinh thang cân.
Cho tam giác ABC vuông cân tại A có AB = 4cm, xác định tâm và bán kính của đường tròn ngoại tiếp tam giác ABC
cho tam giác ABC vuông tại A, AB=6, AC=8.
a) Xác định tâm đường tròn ngoại tiếp tam giác ABC
b) Tính bán kính đường tròn đó