Cho tam giác ABC vuông cân tại A. Trên các cạnh AB,AC lần lượt lấy các điểm D,E sao cho AD=AE. Đường thẳng qua D vuông góc với BE cắt BC tại I. Đường thẳng qua A vuông góc vói BE cắt BC tại K. Gọi M là giao điểm của AK và CD
a)Chứng minh rằng tam giác ABE=tam giác ACD
b) Chứng minh rằng tam giác MAC cân
c) Chứng minh rằng M là trung điểm CD, K là trung điểm của IC
d) Gọi K là giao điểm của DK và IM, MK cắt GC tại F. Chứng minh rằng FM=FK
Cho tam giác ABC vuông cân tại A. Trên các cạnh AB,AC lần lượt lấy các điểm D,E sao cho AD=AE. Đường thẳng qua D vuông góc với BE cắt BC tại I. Đường thẳng qua A vuông góc vói BE cắt BC tại K. Gọi M là giao điểm của AK và CD
a)Chứng minh rằng tam giác ABE=tam giác ACD
b) Chứng minh rằng tam giác MAC cân
c) Chứng minh rằng M là trung điểm CD, K là trung điểm của IC
d) Gọi G là giao điểm của DK và IM, MK cắt GC tại F. Chứng minh rằng FM=FK
Bài 1:Cho hình thang cân ABCD (Ab song song với CD)có AB=Ad và BD=DC.Tính các góc của hình thang này.
Bài 2:Cho tam giác ABC đều.Vẽ đường vuông góc với BC tại C cắt AB tại E.Vẽ đường vuông góc với AB tại A cắt BC tại F.Chứng minh rằng ACFE là hình thang cân.
Bài 3:Cho tam giác ABC cân tại A ,M là điểm bất kì nằm giữa A và B.Trên tia đối của CA lấy điểm N sao cho CN=BM.Vẽ ME và NF lần lượt vuông góc với đường thẳng BC.Gọi I là giao điểm của MN và BC.
a)Chứng minh : IE=IF
b)Trên cạnh AC lấy điểm D sao cho CD=CN.Chứng minh rằng BMDC là hình thang cân.
Bài 4:Cho tam giác ABC cân ở A ;M là trung điểm của BC.Trên tia AM lấy điểm N;BN cắt AC ở D,CN cắt AB ở E.Chứng minh BEDC là hình thang cân
Bài 5:Cho hình thang cân ABCD (AB song song với CD) ; góc D=60 độ,AD=AB
a)Chứng minh :DB là phân giác góc ADC
b)Chứng minh : DB vuông góc với BC
Mọi người giúp mình với, mình đang cần gấp
1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D;
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE.
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng
5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF
cho tam giác ABC cân tại A. Gọi H, K lần lượt là trung điểm của BC và AC.
a) chứng minh ABHK là hình thang.
b) Trên tia đối của tia HA lấy điểm Éao cho H là trung điểm của AE. Chứng minh tứ giác ABEC là hình thoi
C) Qua A vẽ đường thẳng vuông góc với AH cắt tia HK tại D. chứng minh AD =BD.
d) Vẽ HN vuông góc với AB (N thuộc AB), gọ I là trung điêm của AN. Trên tia đối của BH lấy điểm M sao cho B là trung điểm của HM. Chứng minh MH vuông góc HI
Cho tam giác ABC cân tại A. Gọi H, K lần lượt là trung điểm của BC, AC.
a) Chứng minh tứ giác ABHK là hình thang.
b) Qua A vẽ đường thẳng vuông góc với AH, cắt tia HK tại D. Chứng minh AD=BH.
c) Vẽ HN vuông góc với AB (N thuộc AB), gọi I là trung điểm của AN. Trên tia đối của tia BH, lấy điểm M sao cho B là trung điểm của HM. Chứng minh MN vuông góc với HI.
cho tam giác abc vuông cân tại a. hai tia phân giác bm và cn cắt nhau tại i ( m thuộc ac, n thuộc ab ) . chứng minh :
a, im=in và mn song song bc
b, qua a và n kẻ đường vuông góc với bm cắt bc lần lượt tại d và e . chứng minh am=de=cd
c, tam giác mcd là tam giác gì ?
d, h là trung điểm của bc. chứng minh ah, bm, cn ddoongwf quy
e, chứng minh bm+am>bc
Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.
Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.
Bài 6. Cho tứ giác ABCD có hai đường chéo cắt nhau tại I thỏa mãn tam giác AID đòng dạng tam giác BIC. Kẻ IH ⊥ AD, IK ⊥ BC. M, N lần lượt là trung điểm AB, CD. Chứng minh rằng MN ⊥ HK.
Bài 7. Cho tứ giác ABCD có hai đường chéo cắt nhau tại O. Gọi M, N lần lượt là trung điểm AB, CD; H, K lần lượt là trực tâm các tam giác AOD, BOC. Chứng minh rằng MN ⊥ HK.
Bài 8. Cho tam giác ABC. Các đường cao AD, BE, CF . M thuộc tia DF , N thuộc tia DE sao cho ∠M AN = ∠BAC. Chứng minh rằng A là tâm đường tròn bàng tiếp góc D của tam giác DMN .
Bài 9. Cho tứ giác ABCD có hai đường chéo AC = BD. Về phía ngoài tứ giác dựng các tam giác cân đồng dạng AMB và CND (cân tại M, N ). Gọi P, Q lần lượt là trung điểm của AD, BC. Chứng minh rằng M N vuông góc với PQ.
Bài 10. Cho tam giác ABC. Các đường cao AD, BE, CF . Trên AB, AC lấy các điểm K, L sao cho ∠FDK = ∠EDL = 90◦. Gọi M là trung điểm KL. Chứng minh rằng AM ⊥ EF .
Mong các bạn giúp đỡ mình. Giúp được bài nào thì giúp nhé.